P/2010/00255

RECEIVED -4 MAR 2010

APPENDIX K3

Factual Report into Ground Investigation

书位: 3.03.2

National Football Centre, Byrkley Park Factual Report into Ground Investigation

August 2001 121070

Client: The Football Association Engineer:
Building Design Partnership
Sunlight House
P O Box 85
Quay Street
Manchester
M60 3JA

Exploration Associates, Geotechnical House, Unit 18, Deeside Industrial Estate,
Deeside, Flintshire, CH5 2LR
Tel: (01244) 288200 Fax: (01244) 288100 E-mail: enquiries@chester.esgl.co.uk

National Football Centre Byrkley Park Factual Report into Ground Investigation

August 2001 121070

Client: The Football Association Engineer:
Building Design Partnership
Sunlight House
P O Box 85
Quay Street
Manchester
M60 3JA

National Football Centre

Byrkley Park

Factual Report

CONTENTS

121070

			PAGE					
1.	INTR	CODUCTION	1					
2.	THE SITE							
3.	FIELDWORK							
4.	LABORATORY TESTING							
5.	GROUND CONDITIONS							
	5.1 5.2 5.3							
	REFERENCES							
	FIGU	FIGURES						
	ENC	ENCLOSURES						
	A B C D E	Exploratory Hole Records Instrumentation Readings Laboratory Testing Drawings General Notes						
	ADDENDUM							
	Trial Pit Photographs							

1. INTRODUCTION

It is proposed to develop a national football centre at Byrkley Park.

On the instructions of Building Design Partnership, Consulting Engineers to the Football Association, an investigation was carried out by Exploration Associates to provide information on the ground conditions for the design and construction of the proposed works. A factual report only was requested by Building Design Partnership in a letter ref:MR08799.

The report contains descriptions of the fieldwork and laboratory testing carried out, summaries of the ground and groundwater conditions revealed and results of tests, measurements and descriptions made in the field and in the laboratory.

The investigation was carried out in general accordance with the relevant British Standards^(1,2). General notes on the techniques employed during site investigations carried out by Exploration Associates are given in the Enclosures.

2. THE SITE

The site is located at National Grid reference SK 165 235 as shown on the Site Location Plan (Drawing 1). the area surrounding the derelict Byrkley House comprises some 100 hectares of undulating pasture and woodland. A river flows through the site with two weirs present within the site boundary.

3. FIELDWORK

The fieldwork was specified by Building Design Partnership and carried out during the period 9th May to the 24th May 2001.

Twenty boreholes were sunk at the positions shown on the Exploratory Hole Location Plan (Drawing 2) by soft ground cable percussive boring techniques, rotary coring and open-hole drilling methods to depths of between 2.34m (Borehole 2) and 17.90m (Borehole 5B). Twenty two trial pits were excavated mechanically to depths of between 0.15m (Trial Pit Weir 2) and 5.00m (Trial Pit 15) at positions also shown on the Exploratory Hole Location Plan. The depths of the boreholes and trial pits, descriptions of the strata encountered and comments on the groundwater conditions revealed during the fieldwork operations are given on the borehole and trial pit records (Enclosure A).

Disturbed and undisturbed samples were taken at the depths shown on the records. Small disturbed samples were obtained from throughout the boreholes and trial pits primarily for identification purposes. Bulk disturbed samples were recovered to enable more representative descriptions to be made. General purpose undisturbed samples of 100mm nominal diameter were taken in cohesive materials. Groundwater samples were recovered from trial pits 2, 2R, 3, 4, 4B, 5, 9, 14, Weir 1 and Weir 2.

Standard Penetration Tests (split barrel sampler and cone) were carried out in granular material and weathered bedrock to assess the relative density or hardness of the materials and in cohesive strata to obtain an indication of their consistency. Values of penetration resistance are presented in Enclosure A, on the borehole records.

19mm standpipes were installed in Boreholes 1A, 2A, 5B, 6, 7, 11, 12 and 14 to enable subsequent measurements of groundwater levels to be made. The piezometers were fitted with Casagrande type plastic tips. Details of the installations are given on the relevant borehole records and water levels recorded in the instrument following the fieldwork are given in Enclosure B.

The samples were despatched to the laboratory at Deeside, Flintshire for examination and testing. The descriptions of strata, given on the records, were made in general accordance with the recommendations given in BS 5930; 1999⁽¹⁾.

The exploratory hole positions were set out by representatives of Exploration Associates and Building Design Partnership.

The ground levels and co-ordinates at the exploratory hole positions, given on the records, were obtained using survey station information provided by Building Design Partnership.

4. LABORATORY TESTING

The laboratory work was scheduled by Building Design Partnership.

The principal objectives of the testing programme were to classify the deposits, to determine the shear strength and compressibility of the cohesive materials and to determine the aggressiveness of the soils and groundwater with respect to chemical attack on construction materials. Tests were also made to provide information on the compaction characteristics of the soil materials and for pavement design.

Contaminant analyses were carried out on selected samples by TES Bretby to provide a preliminary assessment of the degree of chemical contamination present within the near surface/made ground materials.

The soil tests were carried out at our UKAS accredited laboratory in Flintshire generally according to BS 1377; 1990⁽²⁾ unless indicated otherwise.

The tests carried out were:-

- Natural moisture content
- Natural wet density
- Liquid and plastic limit
- Particle size distribution
- Unconsolidated undrained triaxial compression
- California bearing ratio
- Standard and Heavy Compaction
- Moisture Condition Value
- Consolidation
- Sulphate concentration and pH value
- Contaminant analyses

The contaminant analyses were carried out by TES Bretby who are a sister company of Exploration Associates at their UKAS accredited facilities in Burton-on-Trent.

The results of the laboratory tests are given in Enclosure C.

5. GROUND CONDITIONS

5.1 Published Geology

Geological records⁽³⁾ indicate the site is expected to be underlain by glacial till (recorded as Boulder Clay) overlying rocks forming the Mercia Mudstone Group which is Triassic in age.

5.2 Strata Encountered

Turf was found to cover a thickness of topsoil between 0.05m (Trial Pit 5) and 0.80m (Trial Pit 2).

Elsewhere, Made Ground comprising ashy gravelly sand, sandy gravelly clay and clay bound fill was encountered between 0.40m (Borehole 4) and 3.20m (Borehole 5B).

At the trial pit locations, underlying the topsoil and/or Made Ground, a firm to stiff sandy gravelly clay was encountered within all of the trial pits to a maximum depth of 5.00m (Trial Pit 15).

Beneath the clay, a gravel deposit was encountered at the locations of trial pits 2, 2A, 3, 4, 4A, 4B, 8, 10, 12 to a maximum depth of 4.80m (Trial Pit 8).

At the borehole positions, firm, stiff and very stiff clay was proven between depths, firm, stiff and very stiff clay was proven between depths of 1.30m (Borehole 2) and 10.50m (Borehole 12A).

Within the cohesive strata, granular deposits comprising silty sand, silty sandy gravel were encountered at the location of Borehole 4 between 2.10m and 3.40m.

Underlying the glacial till, a weathered bedrock of mudstone and siltstone was proven to a maximum thickness of 17.40m (Borehole 5B).

5.3 Groundwater

Groundwater was not encountered during in the boreholes throughout the fieldwork period with the exception of boreholes 12, 13 and 14. A rise from 1.30m to 1.25 m was noted in borehole 12, borehole 13 showed a rise from 1.40m to 1.30m after a 20 minutes period with borehole 14 showing a constant head of 1.90m. Seepages were noted within trial pits, ranging in depth from 2.00m (Trial Pit 16) and 4.50m (Trial Pit 14).

The seepages ranged from small seepages to fast inflow into the pit.

For and on behalf of Exploration Associates

A Hussain

Project Geologist

D Daniels
Principal Engineer

REFERENCES

- 1. BS 5930: 1999. Code of Practice for Site Investigations. British Standards Institution.
- 2. BS 1377: Parts 1 to 9: 1990. Methods of Test for Soils for Civil Engineering Purposes. British Standards Institution.
- 3. British Geological Survey. 1:63,360, Geological Survey of England and Wales.

ENCLOSURE A

Exploratory Hole Records

Sheet

List of Symbols

Key Sheet

Trial Pit Records

TP1 to TP16 including 2A, 4A, 4B, 11A, Weir 1

and Weir 2

Borehole Records

BH1 to BH14

including 1A, 2R, 5A, 5B and 12A

Key to Exploratory Hole Records

SAMPLES

Undisturbed

J

Driven tube sample

W

Pushed thin wall tube sample

CBR

Pushed piston sample CBR mould sample

BLK

Block sample

CS

Core sample (from rotary core) taken for laboratory testing

Disturbed

D B Small sample Bulk sample

Other

W G

ES

ΕW

Water sample

Gas sample

,

Soil sample Water sample

TEST RESULTS

S or C

Standard Penetration Test, open shoe (S) or solid cone (C)

The Standard Penetration Test is defined in BS 1377: Part 9 (1990). The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 (either in total or for a single increment)

nominally 100 mm diameter and full recovery unless otherwise stated

the total blow count beyond the seating drive is given (without the N = prefix).

Environmental chemistry samples (in more than one container where appropriate)

IVp IVr

HVp HVr

In situ vane test results given as peak and remoulded shear strengths (kN/m²).

Hand vane test results given as mean peak and mean remoulded shear strengths (kN/m²).

Pocket penetrometer test results given as mean undrained shear strength (kN/m²).

DRILLING RECORDS

The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930 (1999)

TCR

Total Core Recovery, % Solid Core Recovery, %

SCR RQD

Rock Quality Designation, %

lf

Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term

non-intact (NI) is used where the core is fragmented.

Flush returns, estimated percentage with colour where relevant, are given in the Records column

CRF

Core recovered (length in m) in the following run

AZCL

Assessed zone of core loss

GROUNDWATER

A

Groundwater strike

 ∇

Groundwater level after standing period

INSTALLATION

Standpipe/ piezometer Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill. Details of

backfill are provided in Remarks at the base of record.

NOTES

Water level observations during boring and drilling are given at the foot of the log and in the Legend column.

2 3 The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures

The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole

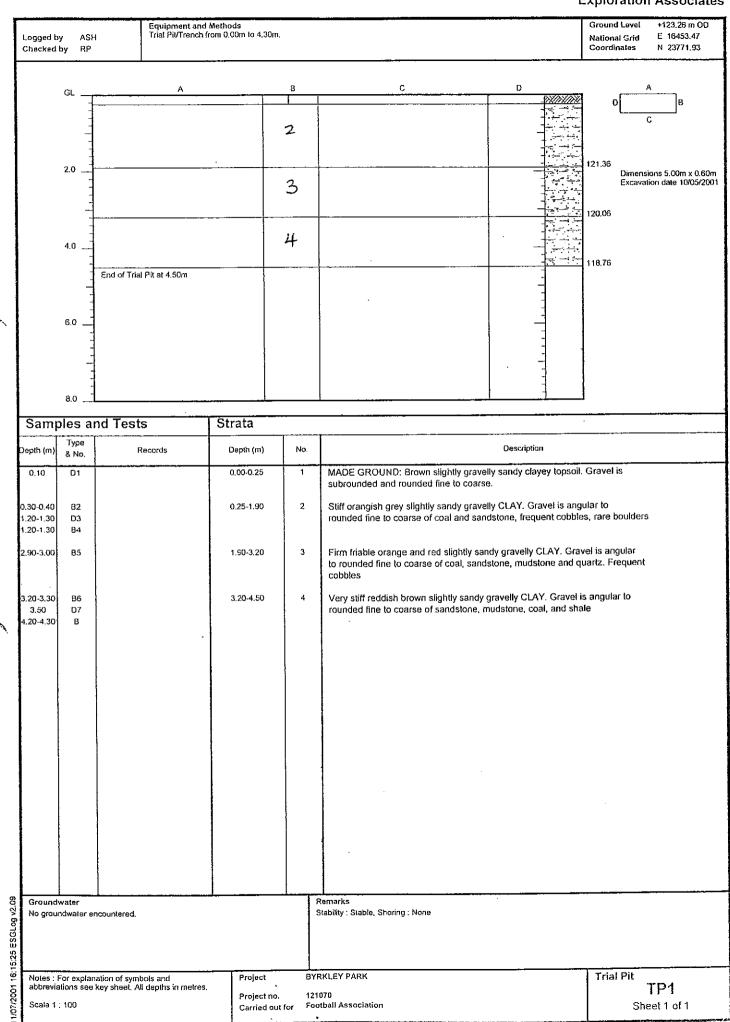
this will be the dip.

4

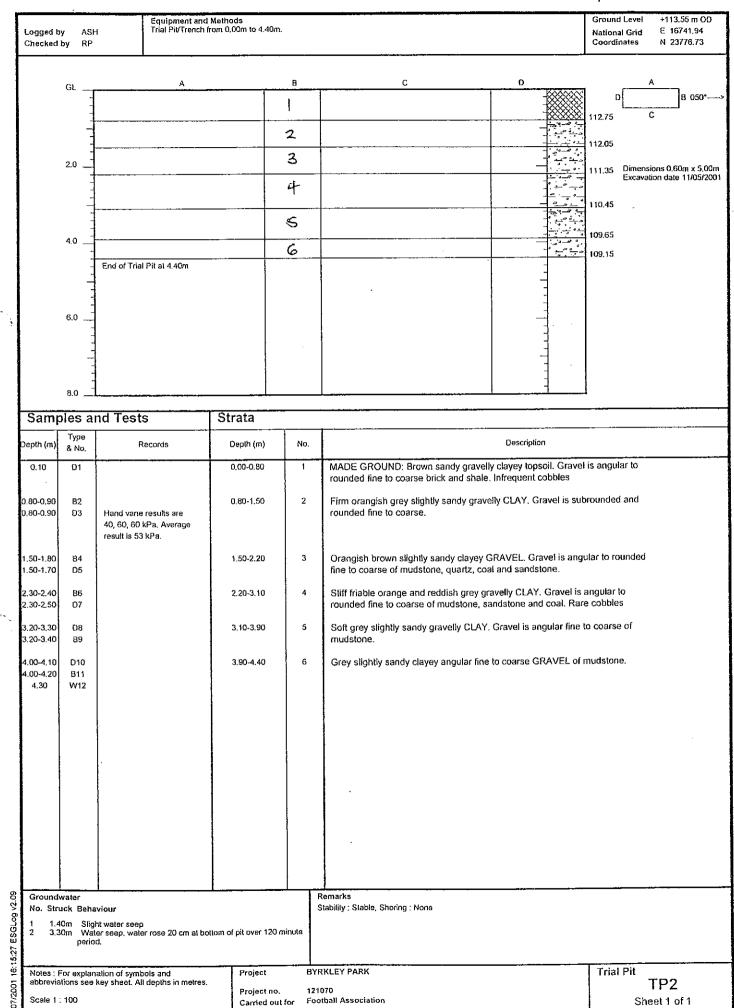
Legends are in accordance with BS 5930 (1999)

REFERENCES

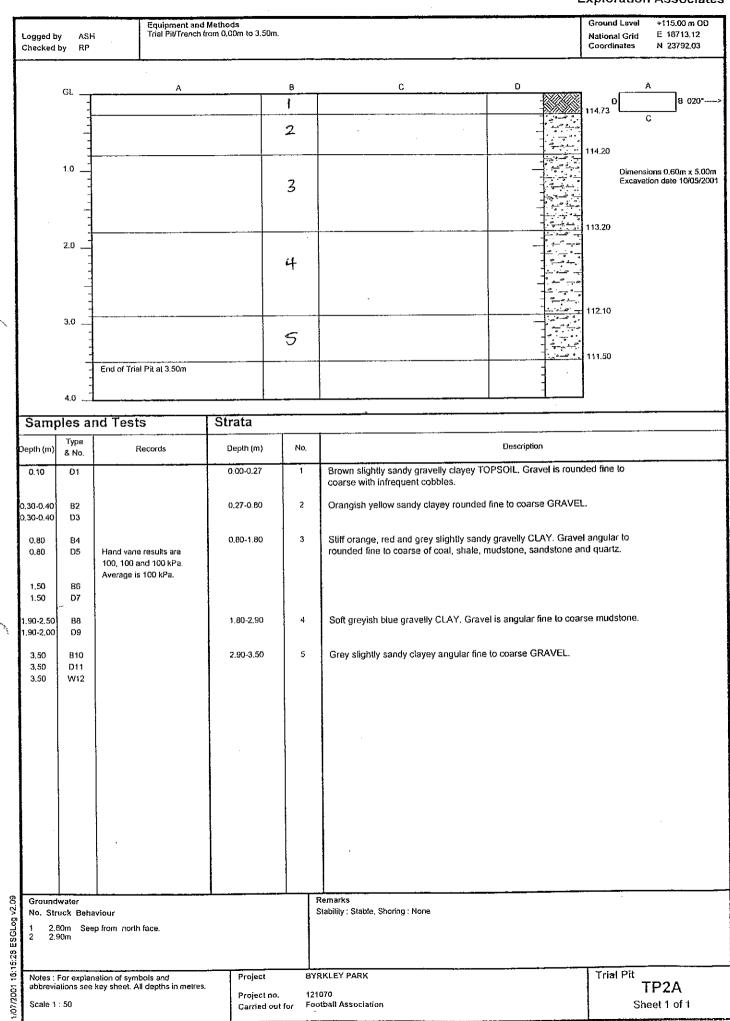
BS 1377: 1990: British Standard Methods of test for soils for civil engineering purposes. British Standards Institution

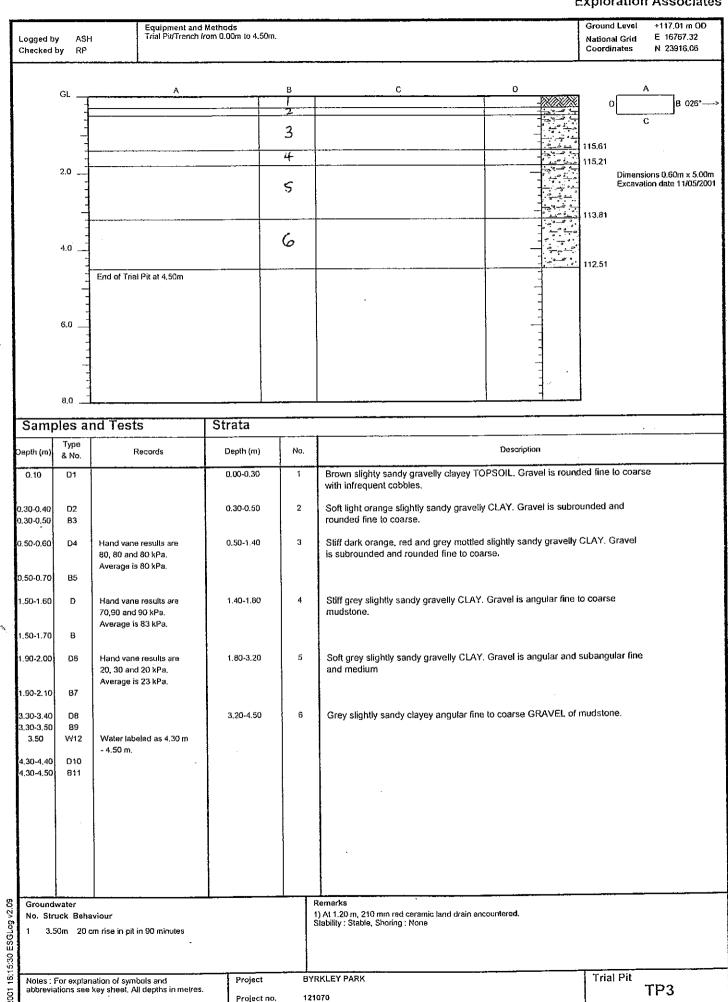

BS 5930 : 1999 : Code of Practice for site investigations. British Standards Institution

Notes: Project National Football Centre, Byrkley Park Figure

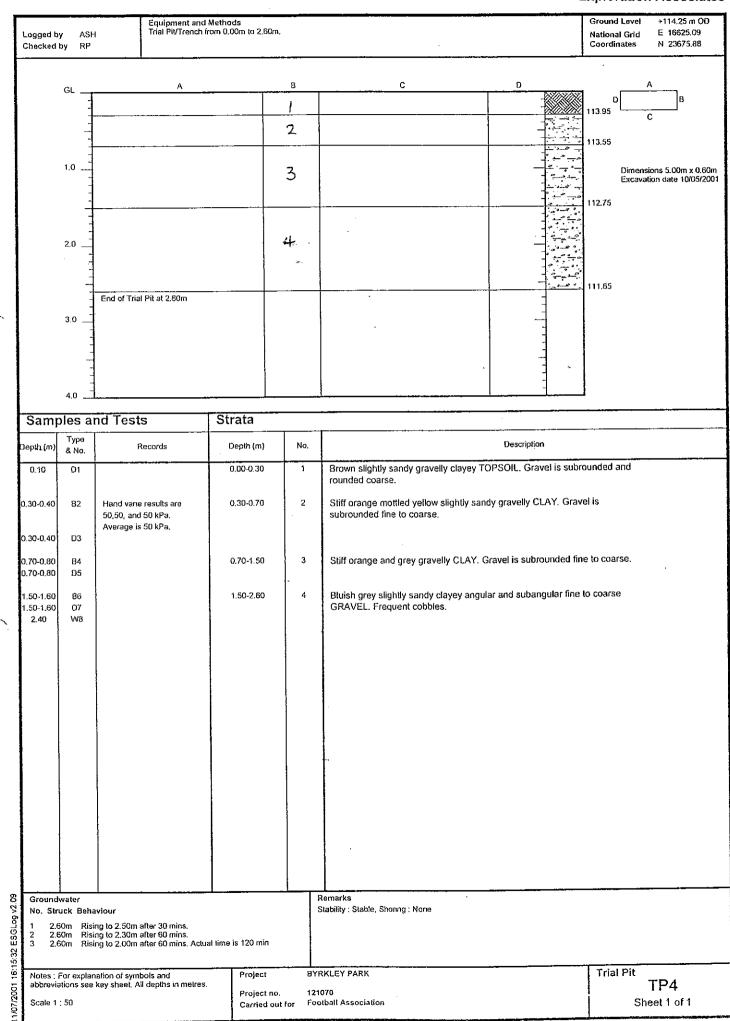

Project No. Carried out for 121070 The Football Association

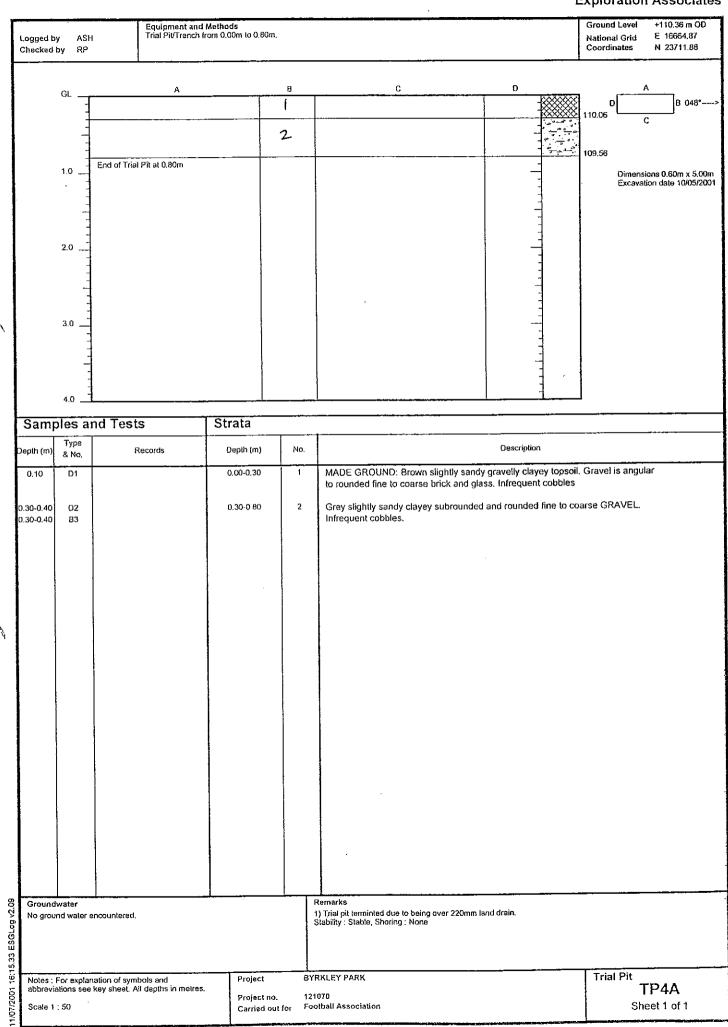
Sheet 1 of 1



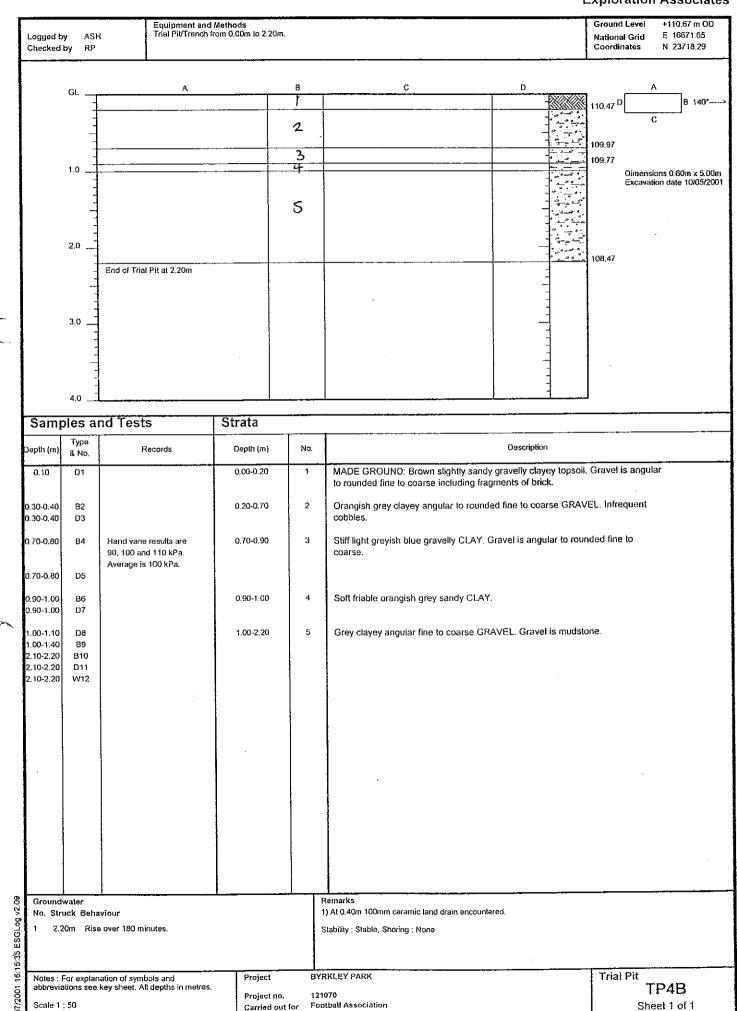


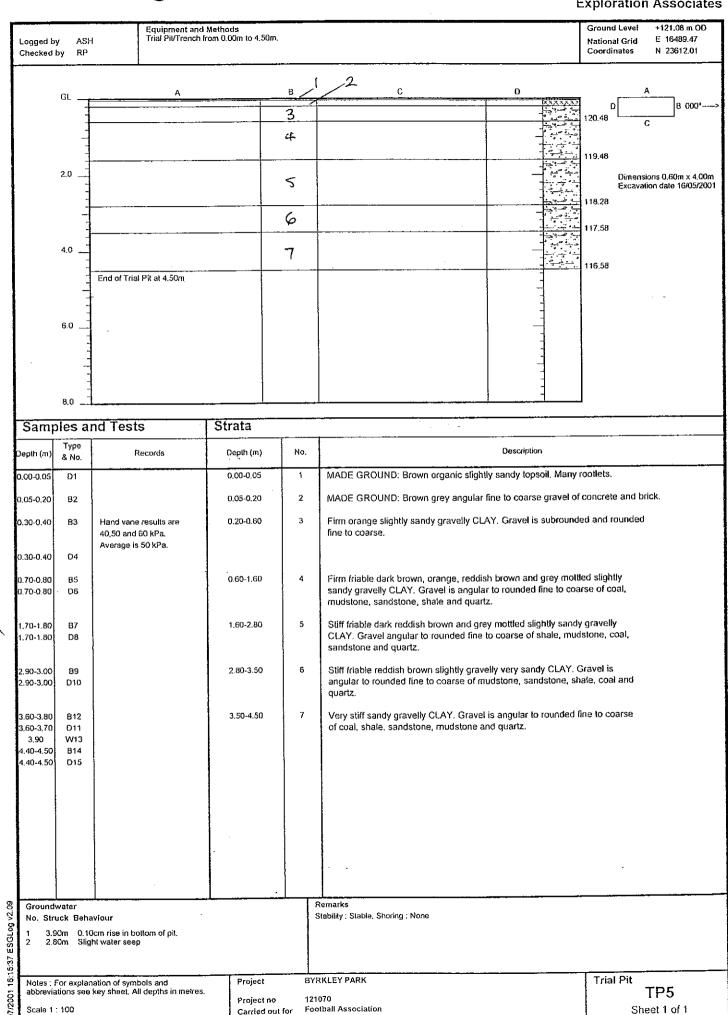
Scale 1:100

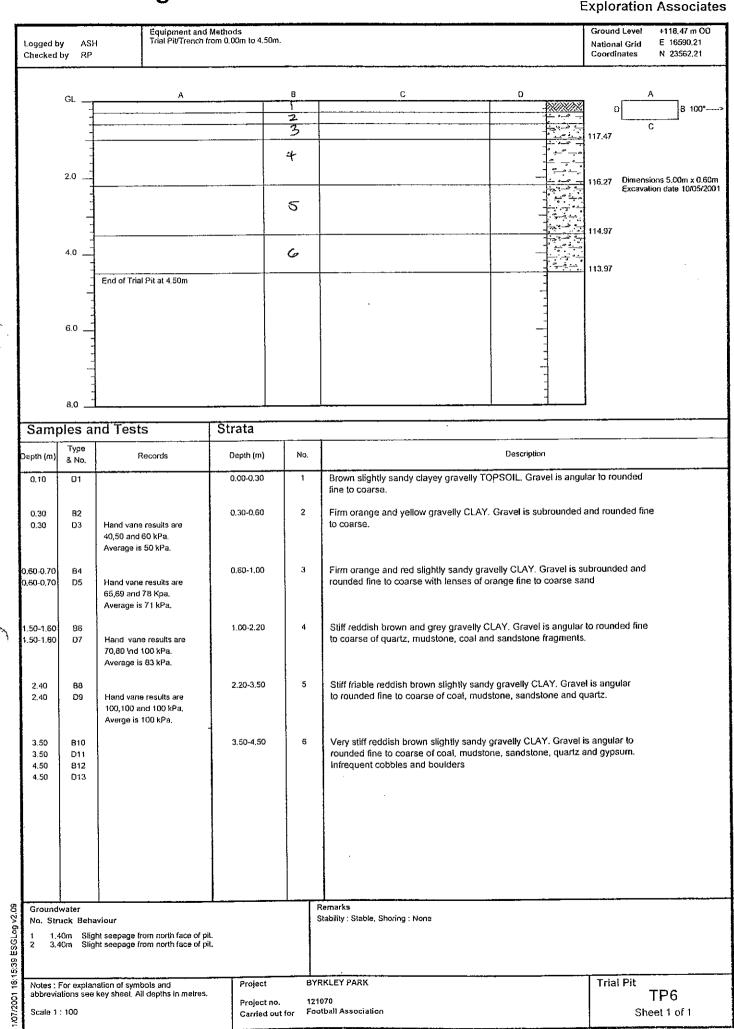

Sheet 1 of 1

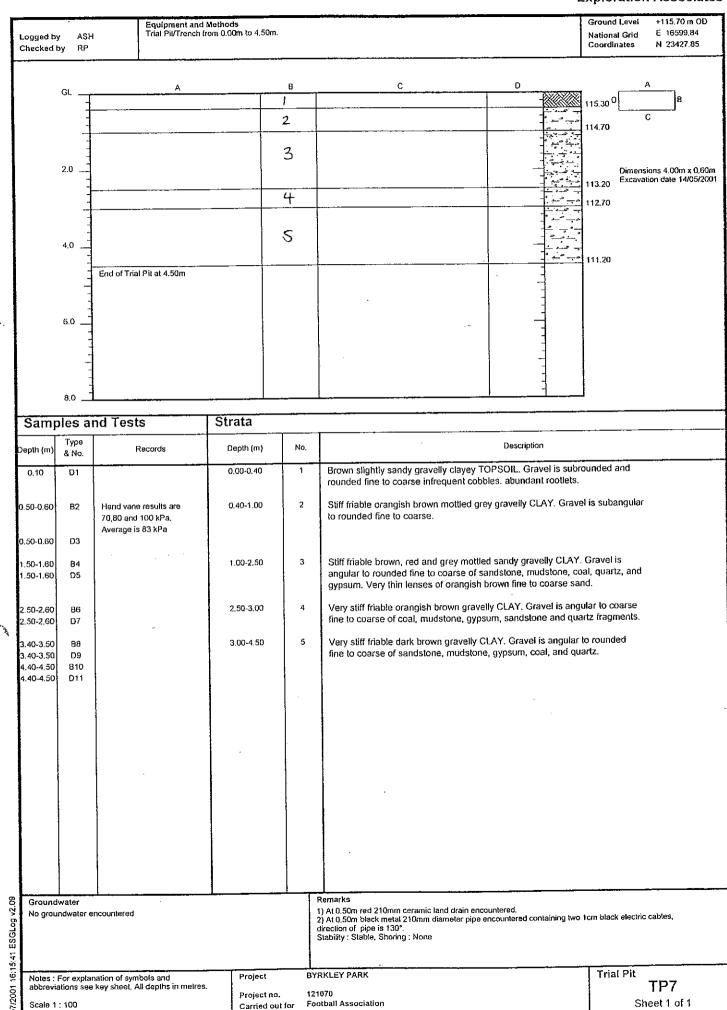

Football Association

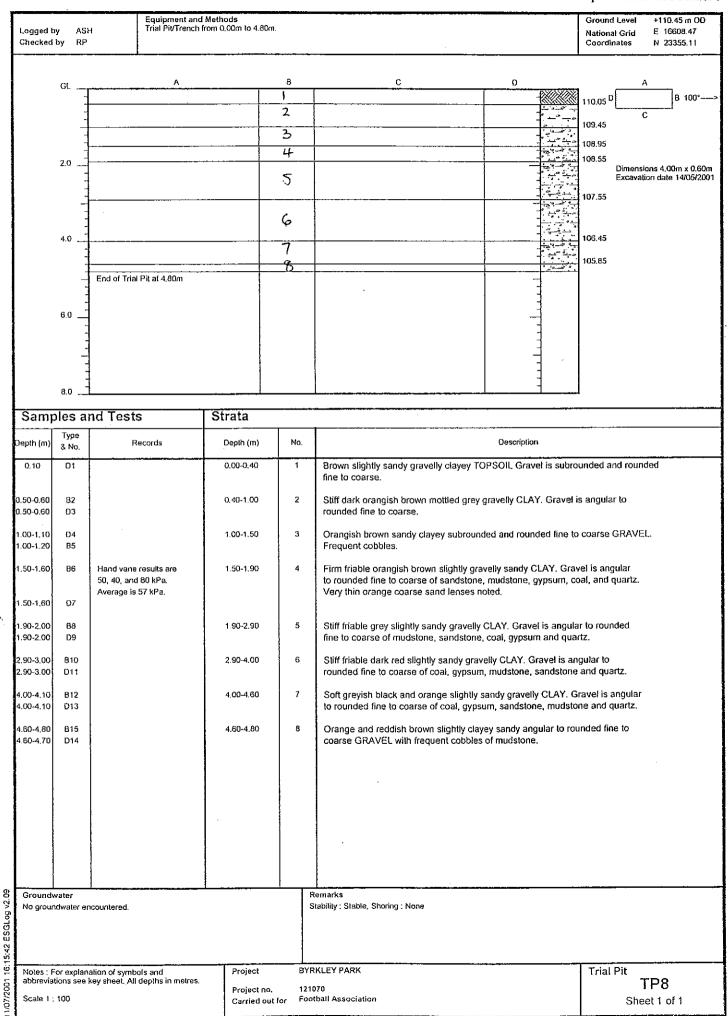
Carried out for



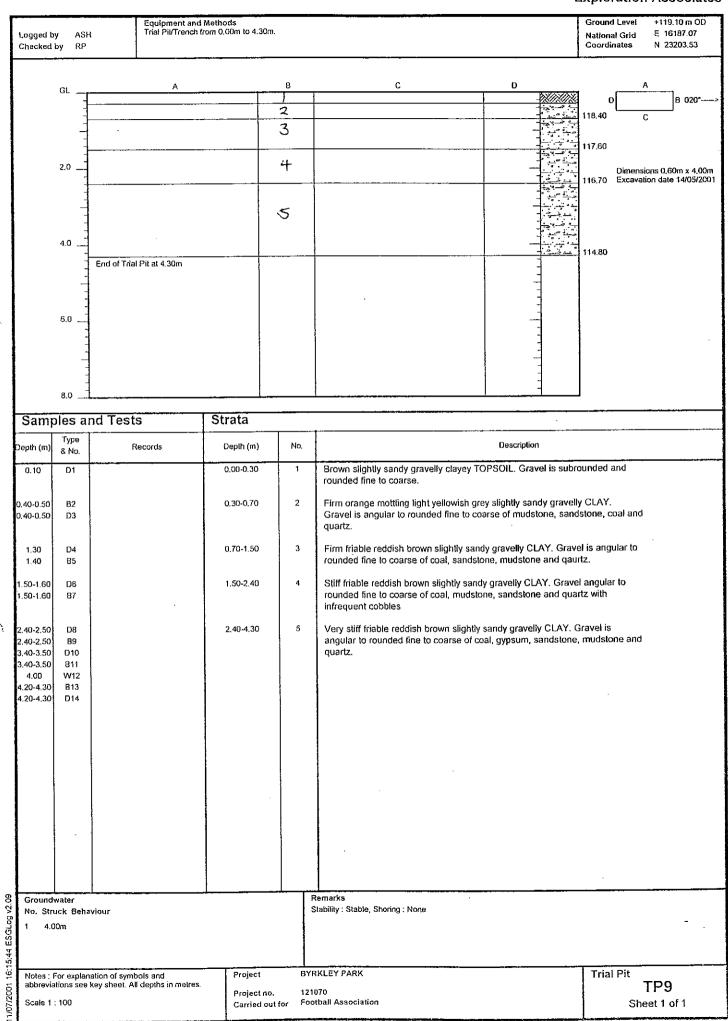


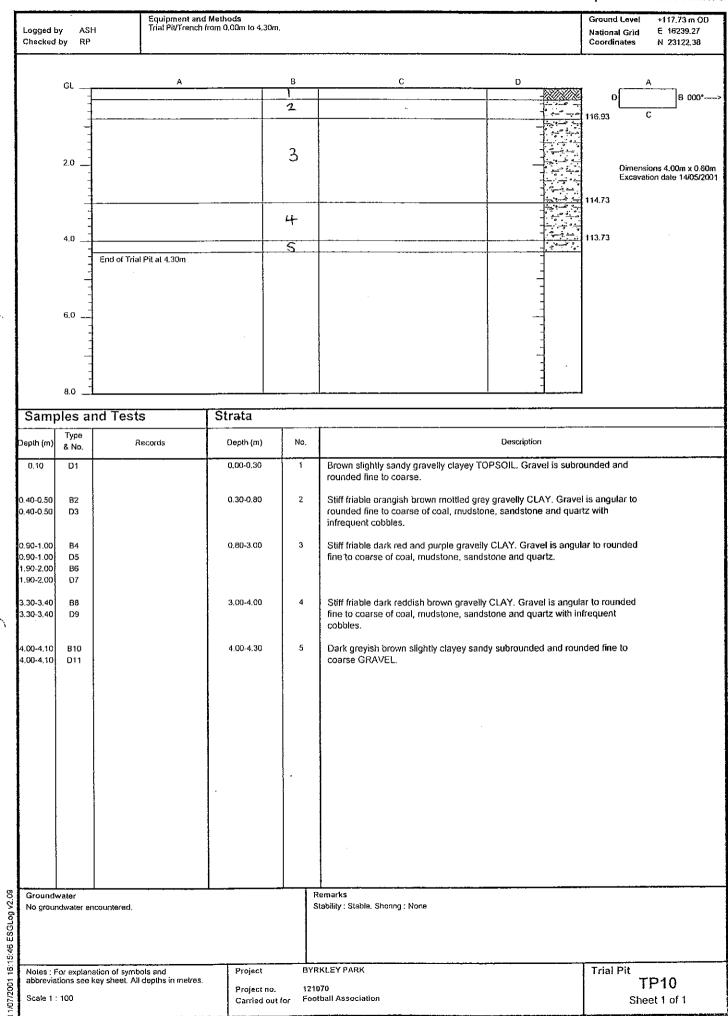




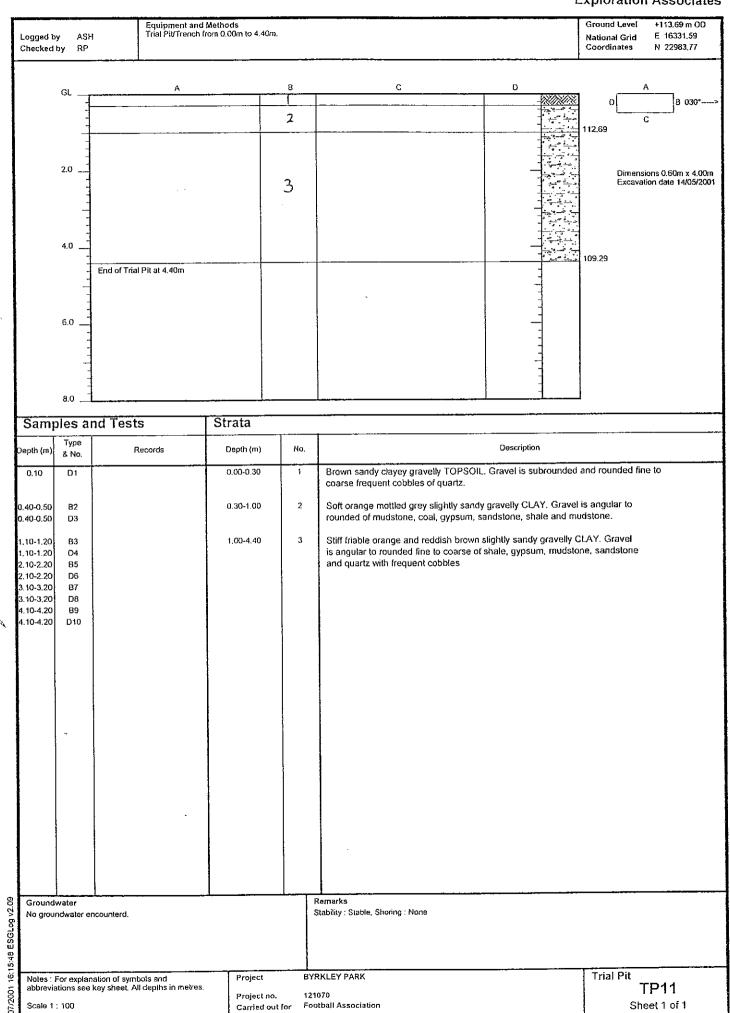


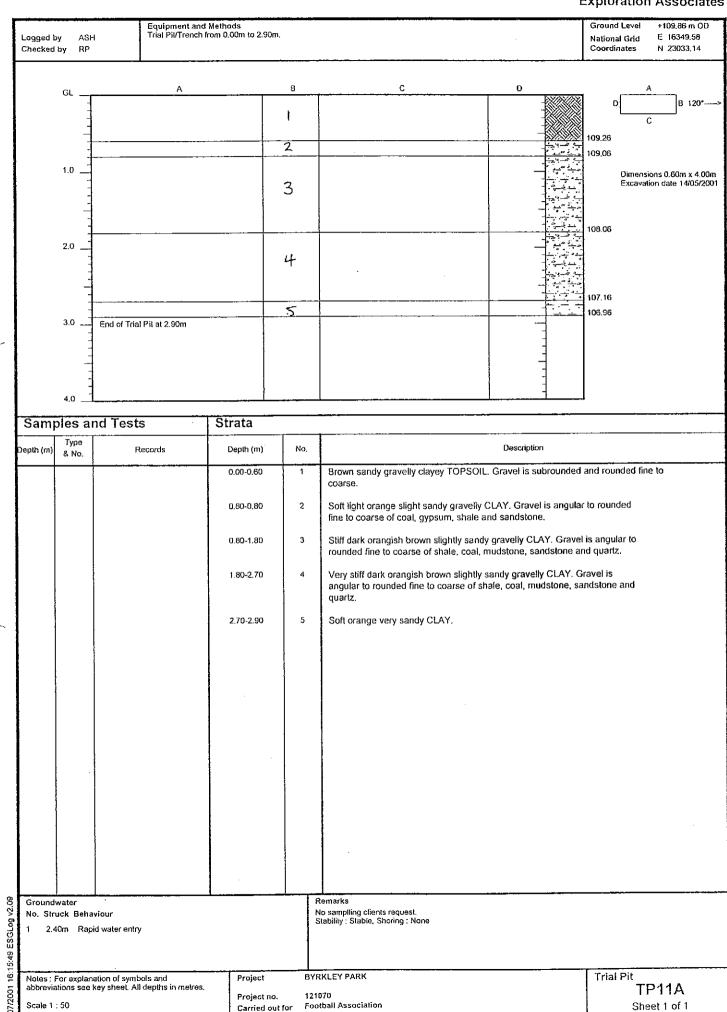
Scale 1: 100

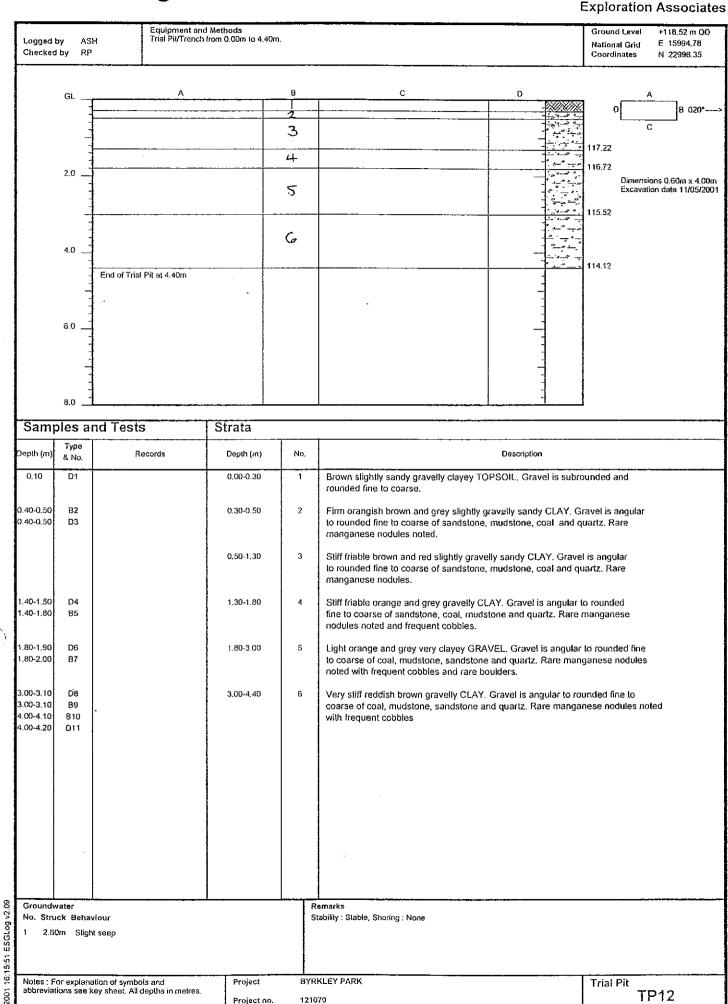

Sheet 1 of 1


Football Association

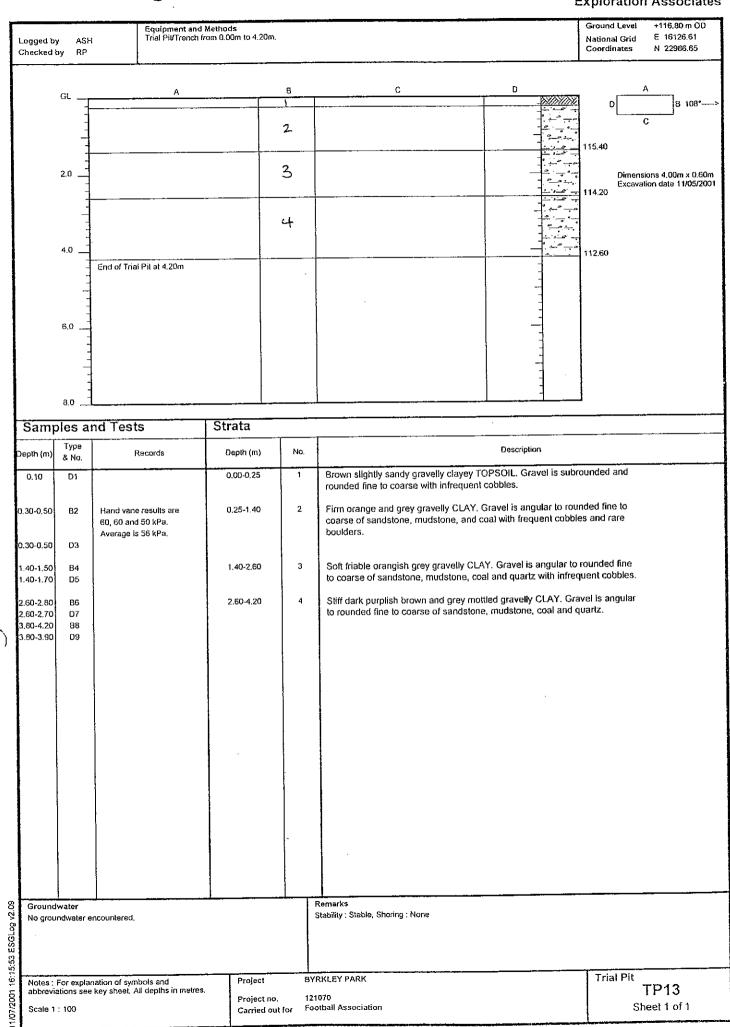
Carried out for

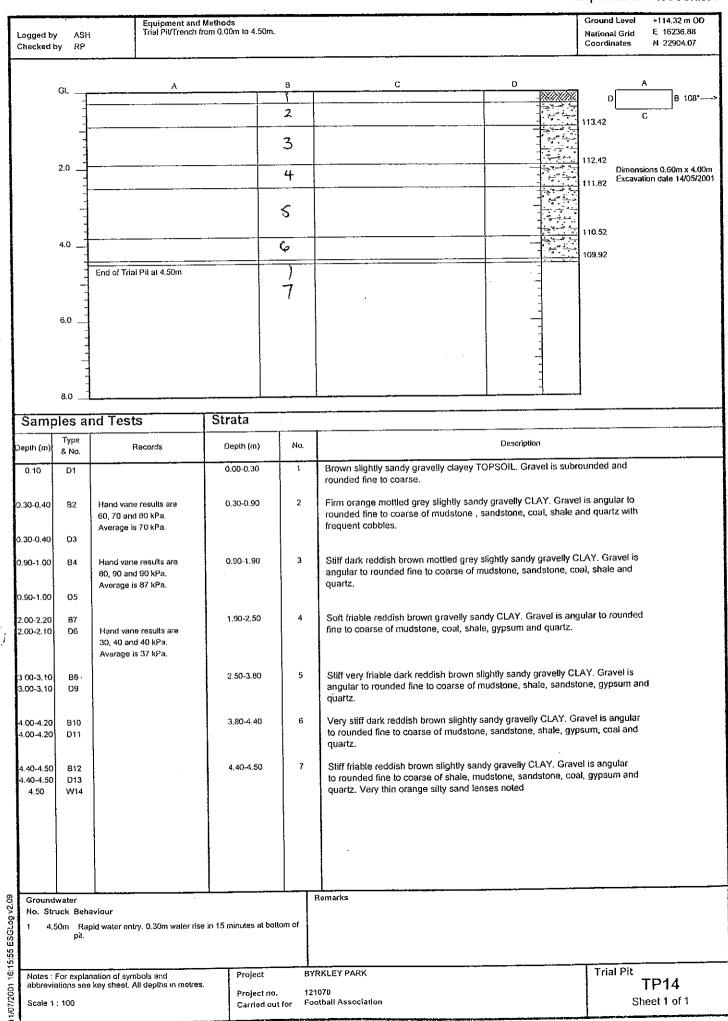




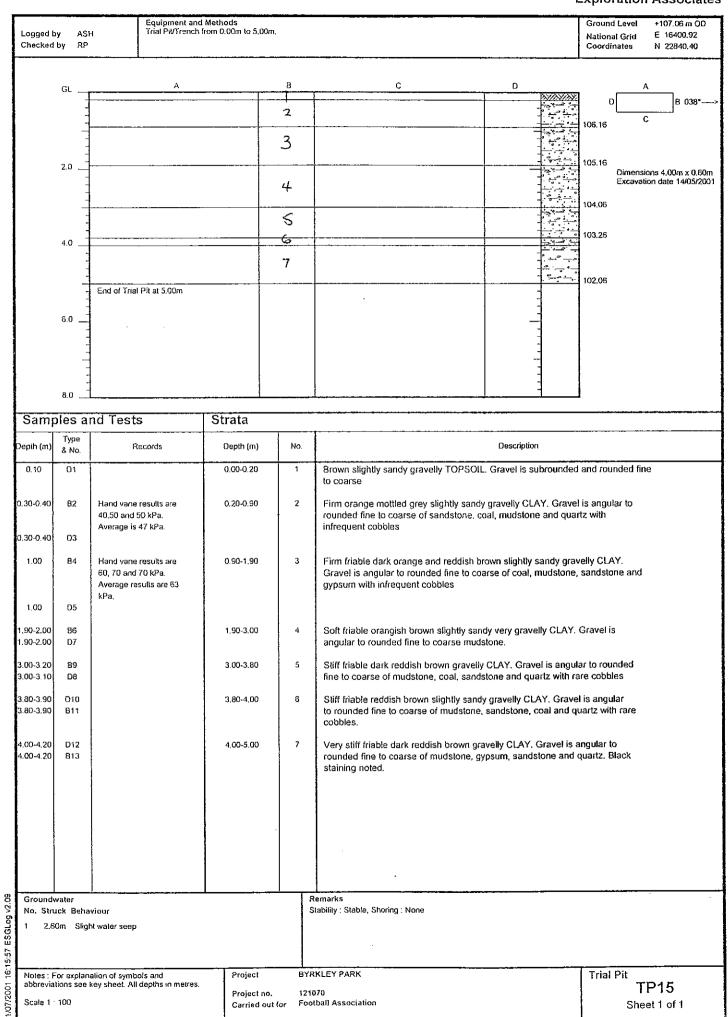


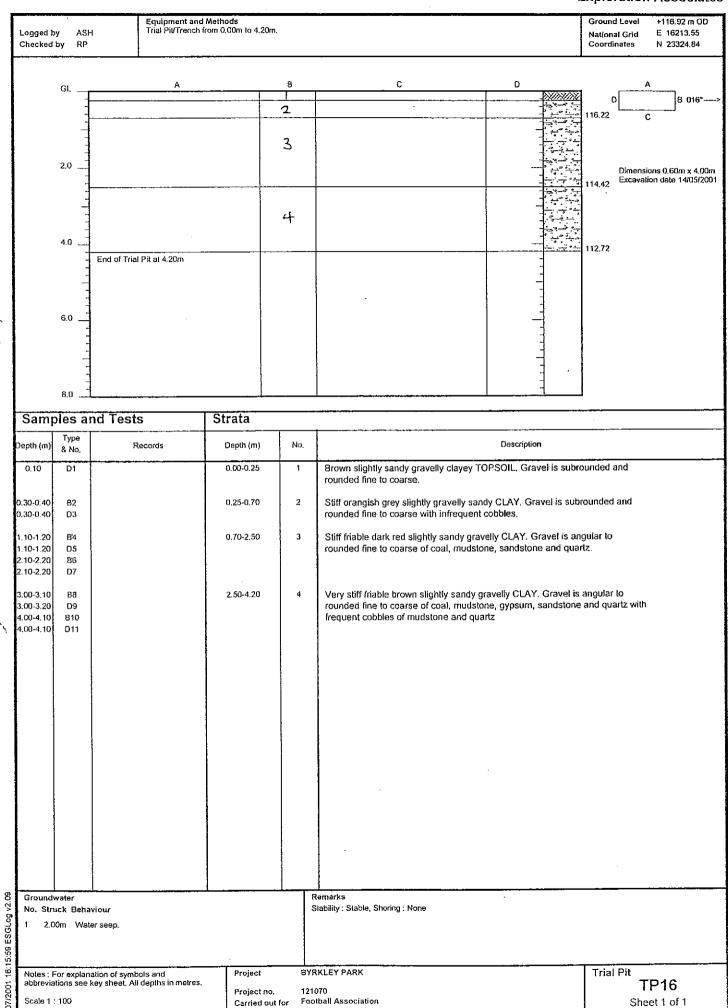
Scale 1:100

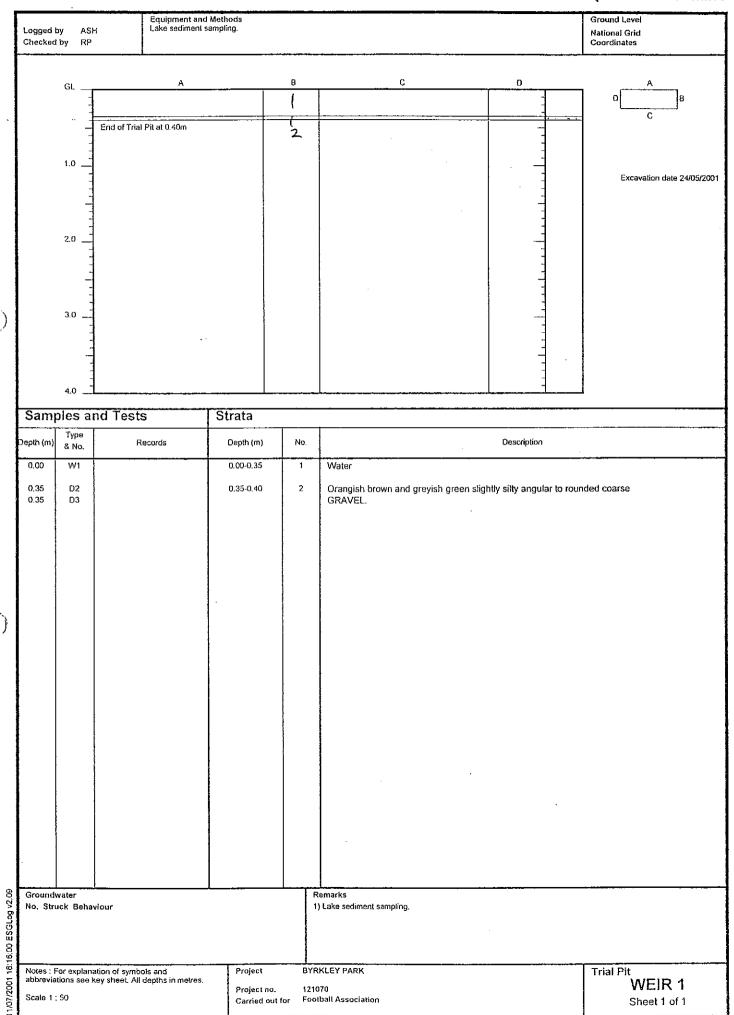

Sheet 1 of 1


Football Association

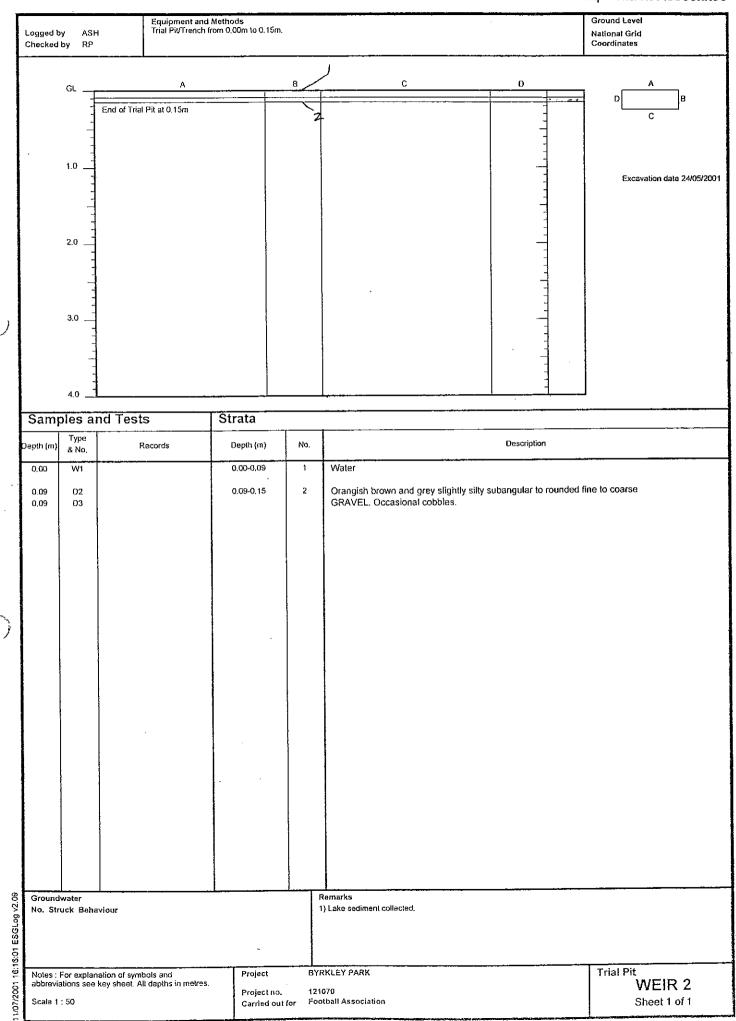
Carried out for







Carried out for



Borehole Log

Logged by	NH ML RP	Equipment and Meth Cable Percussion 150		er from 1,	20m lo 4.82m.	Ground Level National Grid Coordinates	
Samples	and Tests	<u> </u>			Strata	J	
Depth	Type & No.	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
0.30	B1		09/05/200	1	Turf over brown sandy TOPSOIL (driller's description)	(0.30) 0.30 +120.14	a
	U2	84 blows			Firm red and orangish brown with a little grey mottling slightly sandy gravelly CLAY with occasional fibrous roots. Gravel is angular to rounded fine and medium	(0.90) 1.20 +119,24	
1.55	03				-	11.20	
2.00 - 2.45 2.00 - 3.00	D4 85	S,SW = 0,N=23 4,6/5,7,8,5	1.50	dry			
3.00 - 3.45	U6	150 blows	1.50	dry	Very stiff reddish brown with bluish grey veining slightly sandy very gravelly CLAY. Gravel is subangular to rounded fine to coarse including blue mudstone.	(3.40)	
3.55	D7				Below 3,55m; Qark brown. =		
4.00 - 4.45	98 89	S,SW ≈ 0,N≅26 6,5/5,7,6,8	1.50	dry	Light grey angular fine and medium GRAVEL of siltstone		
	D10	S,SW = 0,50	09/05/200 1.50	dry	Highly weathered SILTSTONE EXPLORATORY HOLE ENDS AT 4.82 m.	4.60 +115.84 4.82 +115.62	
4.80 - 4.82	D11	S,SW = 0,50 25 for 70mm,/50 for 10mm S,SW = 0,50 25 for 10mm,/50 for 10mm	1.50	dry			
- - -					-		
- - - -							
• • • →			4444				
· ·							
- - - -		4-7-1-1					
- 	ļ				-		
-							
Groundwaler No groundwaler encountered.					Remarks Chiselling: 4.70m to 4.80m 60minutes Hole backfill: 0.00m to 4.82m Arisings (a).	<u> </u>	1 11
	anation of symb		Project	<u>.</u>	BYRKLEY PARK	Borehole	
					121070 Football Association	St	1 neet 1 of 1

Borehole Log

Drilled by AH Logged by AH Checked by RP		Equipment and Me Cable Percussion fr	Ground Level National Grid Coordinates				
Samples a		<u></u>		Strata			
Depth	Type & No.	Records	Date Time	Description	Depth,Level	Legend	
Бериі	туре а ко.	Kecolus	Casing Water	Boschphon	(Thickness)	Logena	
	 		22/05/2001	Turf over brown granular top soil. (Drillers		2000 la	T
.				despcription)	(0.30)		1
· 				(MADE GROUND)	0.30		
· ·		ļ		=			1
· -							
				-			ı
				-			1
-							1
		-	ļ			L	1
							Т
		ļ		Firm to stiff brown boulder CLAY. (Drillers	(3.70)		ı
•				despcription)			ı
	1			=			1
	İ					<u> </u>	_
						b	1
				1			ı
			ļ	<u>-</u>			١
	-	-	1	=			
					4.00		4
•				Weathered grey MUDSTONE. (Drillers	(0.50pen)		.
			22/05/2001	despcription)			\perp
				EXPLORATORY HOLE ENDS AT 4.50 m.	4,50		
				<u>-</u>			
				-			
]		
	1			-	}		
				<u> </u>			
				<u>-</u>	<u> </u>		
				<u>-</u>			
]			
	Ì						
					1		
	}			<u>-</u>	1		
]	1		
					1		
		1]		
					1		
]	1		
					1		
	:			1	1		
				· -	}		
•		1		_	1		
Notes: For explanation of symbols and abbreviations see key sheel. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Carried out for				Remarks Chiselling: 4.30m to 4.50m 60minutes Hote backfil: 0.00m to 3.00m Arisings (a), 3.00m to 4.00m Bentonite (b). Surface protection: Stop Cock Cover Standpipe installed, 50mm diameter, response zone from 4.00m to 4.50m.			
Nahaa - 5 '		-ale and	Project	BYRKLEY PARK	Borehole		
abbreviations see key sheet. All depths and reduced					Doletiole	1A	
levels in metres. Stratum thickness given in brackets Project no. in depth column. Carried out for				121070 Football Association	0	neet 1 of 1	

Lo	illed by AH gged by ML lecked by RP		Equipment and Meth Cable Percussion 150	ods mm diamete	er from 0.	00m to 2.34m.	Ground Level National Grid Coordinates	+113,09 m OO E 16641.61 N 23759,10
S	amples a	nd Tests	;			Strata		
-	Depth	Type & No.	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
· · · · · · · · · · · · · · · · · · ·	0.20 - 1.00 1.00 - 1.45	81 U2	96 blows	09/05/2001		Turf over soft to firm orangish brown and grey mottled CLAY with pockets of greyish brown very clayey subrounded to rounded and flat fine to coarse gravel with cobbles.	(1.30)	a a
-	1.55	D3				Stiff light grey gravelly CLAY. Gravel is subangular fine and medium mudstone	1.30 +111.79 - (1.04pen)	
-	2.00 - 2.28	D4	S,SW = 0,64 13,12 for 60mm/34,30 for 65mm	1.50 09/05/2001 1.50	dry dry	Highly weathered MUDSTONE Below 2.00m:with many gravel sized lithorelicts		
	2.30 - 2.34	D5	S, SW = 0,50 25 for 30mm,/50 for 10mm	1.50	dry	EXPLORATORY HOLE ENDS AT 2.3 weathered recovered as angular gravel with a little clay.	2.34 +110.75	
				į				
-		Ē		:				
-							<u>-</u>	
-								
-							1 1 1 1 1	
-								
-				1				
-								
-					<u></u>			
	Groundwater No groundwater e	encountered				Remarks Chiselling: 2.20m to 2.30m 60minutes Hole backfill: 0.00m to 2.34m Arisings (a).		
а	lotes : For expla	key sheet. All	als and depths and reduced ess given in brackets	Project		BYRKLEY PARK 121070	Borehole	2

Orilled by AF Logged by OJ Checked by RF	LS		Equipment and Meth Inspection Pit from 0.4	nads 00m to 1,50m	n, Rotary	Cored 150 mm diameter from 1.50m to 12.90m.	Ground Leve National Grid Coordinates	
Samples a	nd T	ests		· · · · · · · · · · · · · · · · · · ·		Strata	!	
Depth	Type		Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
1.50 - 3.00m	60 53 47	0	100%	21/05/2001 0.00			(1.50)	
3.00 - 3.45 3.00 - 4.50m	80 73 60	150 275 400	S,SW = 0,N=23 3,8/3,5,7,8 100%			Greyish green, locally light brown highly weathered thickly laminated MUDSTONE, weak, recovered as stiff clay with lithorelicts	(2.50)	
4.50 - 4.72 4.50 - 5.25m 5.25 - 5.39 5.25 - 6.75m	93 27 13	25 62 100 25 62 100 50 75 100	S, SW = 0,50 6,12/50 for 70mm 100% S, SW = 0 25,50 for 68mm			Slightly to moderately weathered greyish green thinly to thickly laminated MUDSTONE, very weak to weak. Closely to very closely spaced subhorizontal to inclined(45°)discontinuities with brown staining. Locally clayey, locally recovered as clayey gravel From 6,00m to 6,10m:dark grey moderately weathered siltstone	(3.35)	
6.75 - 6.89 6.75 - 8.00m	100 76 40	20 47 75 100 175 250	S,SW = 0 25,50 for 62mm	21/05/2000 1.50 22/05/2000 2.00		From 6.75m to 7.35m:slightly clayey in places From 8.30m to 8.40m:open inclined (60°) discontinuitry with brown staining Reddish brown locally grey slightly weathered	7.35	
8.00 - 8.10 8.00 - 9.50m 9.50 - 9.60	93 80 53	100 150 200	S,SW = 0 25,50 for 20mm 100% S,SW = 0	2.00	2.40	thinly to thickly laminated MUDSTONE/SILTSTONE Weak to moderately weak. Closely to medium spaced subbhorizontal discontinuities with dark brown staining on faces, both subhorizontal and associated inclined(45-60°) From 8.40m to 9.40m:grey and red brown interbeds. Below 9.40m:red brown	(5.55)	
9.50 - 9.90m 9.90 - 9.99 _9.90 - 11.40m_ Depth	100 75 25 Ten sen non	20 50 80	25,50 for 25mm 100% S.SW = 0 25,50 for 18mm Records	Date Casing	Time Water			
Froundwater Io. Struck Beha	iviour					Remarks Piezometer installed,tip at 7.00m, sand filter from 5.50m to 7.50m TCR/SCR/RQD: 9.90m to 10.00m 93/87/47 Surface protection: Stop Cock Cover Standpipe Piezometer installed, 19mm diameter, response zone from 5.50	im to 7.50m.	
lotes: For explan bbreviations see evels in metres. S n depth column. icale 1:50	key she	et. All c	ls and lepths and reduced ss given in brackets	Project no Carried or).	BYRKLEY PARK 121070 Football Association	Borehole	2R neet 1 of 2

Drilled by AH Logged by DJLS Checked by RP	;		Equipment and Met See sheet 1	thods			Ground Leve National Grid Coordinates	
Samples and	d Te	ests	 ;			Strata	_L	
Depth TO SO Re	CR CR RQD	lf	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
9.90 - 11.40m 8	93 87 47		100%			At 10.00m; subhoriszontal white veinlet 1-2mm From 10.40m to 10.90m;open subvertical/inclined (60°) discontinuity with brown		
11.40 - 12.90m S	97 90 60	50 100 150	S,SW = 0 25.50 for 28mm			As sheet 1 From 11,40m to 11,60m,11,90m to 12,00m and 12,60m to 12,80m open/subvertical (60°) discontinuities with brown staining	(5.55pen)	
12.90 - 12.98			S, SW ≃ 0 25,50 for 8mm	22/05/200 2.00	1 2.40	EXPLORATORY HOLE ENDS AT 12.90 m.	12.90	
roundwater	THE SERVICE OF THE SE					Remarks		
No. Struck Behaviour					···			
Alses : For explanation of symbols and breviations see key sheet. All depths and reduced rels in metres. Stratum thickness given in brackets depth column. Carried out for ale 1 : 50					. 1	21070 2001ball Association	Borehole Sh	2R eet 2 of 2

ļ	Orilled by AH ogged by ML Checked by RP		Equipment and Meth Cable Percussion 150	ods mm diamete	er from 0.	· · · · · · · · · · · · · · · · · · ·	Ground Level National Grid Coordinates	
h	Samples a	nd Tests	}			Strata	i	
	Depth	Type & No.	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
Lite	0.25 - 1.00	B1		09/05/2001	1	Turf over soft brown granular subsoit (drillers description).	0.25 +121.42 (0.45)	a a
	. 1.00 - 1,45	U2	110 blows			Soft to firm dark yellowish brown and grey mottled slightly sandy slightly gravelly CLAY. Gravel is subrounded and rounded fine to coarse.	0.70 +120.97	
	1.55	D3			4	Firm to stiff reddish brown with grey mottling sandy gravelly CLAY. Gravel is subangular and subrounded fine to coarse. Cobbles noted.	(1.45)	
	2.00 - 2.45 2.00 - 3.00	D4 B5	S,SW = 0,N=82 4,6/11,15,24,32	1.50	dry	Very stiff bluish grey with yellowish brown and orangish brown mottling slightly gravelly CLAY. Gravel is angular and subangular fine and	2.15 +119.52 (1.17pen)	
	3.00 - 3,28	D6	S,SW = 0,89 14,11 for 65mm/39,50 for 65mm	1.50 09/05/200 1.50	dry 1 dry	medium mudstone Below 3.00m with some (Highly to completely weathered MUDSTONE)		
	3.30 - 3.32	07	S,SW = 0,50 25 for 10mm,/50 for 10mm	1.50	dry	EXPLORATORY HOLE ENDS AT 3.32 m.	3.32 +118.35	
	<u>.</u>							
	-		, in the second of the second					
	-							
	-							
	 - -					- -	- - - - -	
	- - :							
	• - • • •							
	- : : :							
	- - - -							
	Groundwater					Remarks		
î	No groundwater e	incountered.				Chiselling: 2.70m to 3.00m 30minutes, 3.20m to 3.30m 60minutes Hole backfill: 0.00m to 3.32m Arisings (a).		
1	Notes : For explai	nation of symb	ools and	Project		BYRKLEY PARK	Borehole	
lorreum.			depths and reduced ess given in brackets	Project n Carried o		121070 Football Association	Si	3 neet 1 of 1

		_ · J				Exploration	n Associat
Drilled by A Logged by M Checked by R	IL.	Equipment and Meti Cable Percussion 15	hods 0 mm diame	ter from 0.	00m to 5.34m.	Ground Level National Grid Coordinates	+117.87 m OD E 16577.06 N 23640.93
Samples a	and Tests	<u></u>			Strata	<u> </u>	
Depth	Type & No.	Records	Date Casing	Time Water	Description	Oepth,Level (Thickness)	Legend
0.40 - 1,00	81		10/05/200	i1	MADE GROUND: Turf over dark greyish brown ashy, clayey gravelly sand with brick fragments.	(0.40) - 0.40 +117.47	
1.00 - 1.45	U2	110 blows			Firm red and orangish brown with light grey mottling slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse. Cobbles noted. Below 1.55m: Firm to stift.	(1.70)	
1.55 - - - 2.00 - 2.45	03 04	S,SW = 0,N=16 2,4/3,4,4,5	1.50	dry	-		
2,00 - 3,00	85	2,4/3,4,4,5			Reddish brown silty fine and medium SAND.	2.10 +115.77	
3.00 - 3.45	us	80 biows	1.50	dry	Bluish grey silty sandy angular fine and medium GRAVEL, predominantly of mudstone.		
3,55	D7				Firm to stiff reddish brown slightly sandy	3,40 +114,47	
4.00 - 4.45 4.00 - 4.60	D8 89	S,SW = 0,N=20 4,4/6,5,4,5	1,50	đry	gravelly CLAY. Gravel is subangular to rounded - fine to coarse gravel Below 4.00m: Stiff to very stiff sandy with much coarse sand and fine gravel of blue	(2.30)	
4.60 - 5.00 - - - - - - 5.00 - 5.30	B10 D11	S,SW = 0,91 9,16/41,50	1.50 10/05/200	dry	Stiff bluish grey CLAY with occasional lenses of orangish brown fine and medium sand and soft	4.60 +113.27 (0.74pen)	
5.32 - 5.34	D12	9,16/41,50 S,SW = 0,50 25 for 10mm,/50 for 10mm	1.50	dry	reddish brown clay. EXPLORATORY HOLE ENDS AT 5.34 m.	5.34 +112.53	
- - - - - - - - -					-		
- - - - - - -							
· · · · · · · · · · · · · · · · · · ·					-		
· · · · · · · · ·							
Groundwater No groundwater	encountered.		l		Remarks Chiselling: 4,80m to 5,00m 30minutes, 5,10m to 5,32m 60minutes Hole backfill: 0,00m to 5,34m Arisings (a).	. 1	<u></u>
	e key sheet. All	ols and depths and reduced ass given in brackets	Project Project r		BYRKLEY PARK 121070	Borehole	4
in depth column. Scale 1:50		gran in oracheta	Carried		Football Association	Sh	eet 1 of 1

	lled by AH		Equipment and Metl					Ground Level	1 Associa
Ch	gged by ML ecked by RP		Cable Percussion 450	0 mm diamel	er from 0.			National Grid Coordinates	E 16522.03 N 23563.18
Sa	amples a	nd Tests	•		·	Strata			
	Depth	Туре & No.	Records	Date Casing	Time Water	Description		Depth,Level (Thickness)	Legend
	0.20 - 0.90	B1		10/05/200	1				
								Š	>>>>>
							\dashv	X	
							∃	8	
	1.00 - 1.45	U2	100 blows			MADE GROUND: Tarmac over soft, firm greyish	크	Ş	
						brown slightly gravelly very sandy CLAY with	∄	ĺ.	
						pockets of soft reddish brown very sandy slightly gravelly clay and clayey gravelly		(2,90)	
	1.55	D3				sand. Gravel includes brick	コ	(_,_,	
						Below 2.00m: saft		Ř	
	2.00 - 2.07	D4	S,SW = 0,50 25 for 50mm,/50 for 20mm	1.50	đry	Below 2.00111. Soft	7		
	2.00 - 2.90	85	20mm				\exists	Š	XXXX
							3	XX	
							\exists	XXX	
	200 0 :-		407.1	2.55				2.90 +117,47	
	3.00 - 3.45	U6	100 blows	3.00	dry		-	2.90 +117.47	
							=		
	3,55	D7						•	
	3,30	"				Stiff to very stiff reddish brown sandy	#) . -	
	4.00 - 4.45	D8	S S\W = 0 N=24	3.00	dry	gravelly CLAY. Gravel is subangular and subrounded fine and medium			
	4:00 - 5:00	89	S,SW = 0,N=24 5,6/5,7,6,6	0.00	01,	Sacrodinged time and medicin	=		
						Below 5.55m; very stiff with much coarse sand	7	(2.90)	
						and fine gravel of mudstone			
]					_	-	
	5.00 - 5.45	U10	110 blows	3.00	dry		∄	<u> </u>	
			405mm recovered			·	=	ľ.	است. است. نب اس
						Light grey angular fine and medium GRAVEL of	\	ľ	
	5.55	D11				/ mudstone	/=	<u>-</u>	
		!		10/05/200 3.00	1 dry	(Highly weathered MUDSTONE)	Z	5.80 +114.57	7.7
	5.90 - 5.92	D12	S.SW = 0.50	3.00	dry	EVEL OR AT TO SHE		6.00 +114,37	
		[S,SW = 0,50 25 for 10mm,/50 for 10mm			EXPLORATORY HOLE ENDS AT 6.00 m.	\exists		
	5.98 - 6,00	D13	10mm S,SW = 0,50 25 for 10mm,/50 for 10mm	3.00	dry		\exists		
			10mm				= =		
							=		
							=		
							∃		
		[]					3	}	
							Ⅎ		
							-		
				ĺ					
							=		
	•]				·	_		
		-					\exists		
		1					\exists		
				}		·	Ⅎ		
				,					
				l				ļ	
	oundwater	<u> </u>		L		Remarks			
	oundwater groundwater er	countered,				Chiselling: 5.90m to 6.00m 60minutes			
						Hole backfill : 0,00m to 6,00m Arisings (a).			
	tes: For explan	elina of comb-	le and	Project		BYRKLEY PARK		Porchala	
10		ичон ог эүшөө	ia di iu	1 troject			- 5	Borehole	
ы	breviations see l	key sheet. All c	lepths and reduced as given in brackets	Project no	_	121070	- !		5

Ļ¢	rilled by Al- ogged by Al- hecked by			Equipment and Met Rotary Open Hole 15	hods 50 mm diamete	er from 0.0	00m to 5.00m.		Ground Level National Grid Coordinates	+120.44 E 16519 N 2356	9.84
Ş	Samples a	nd T	est	5			Strata	•			
	Depth		lf	Records	Date Casing	Time Water	Description		Depth,Level (Thickness)	Legen	d
		TCR SCR RQD				Water				Legen	d
	No groundwater	encoun	lered.				Open hole to 5.00m.Obstruction in borehole.Set up on position 5A Hole backfill: 0.00m to 5.00m Arisings (a).				
-	Notes : For expli	enation :	of symi	pols and	Project		BYRKLEY PARK		Borehole		·
	abbreviations se	e key st Stratun	neet. Al	ll depths and reduced less given in brackets	Project n		121070 Football Association) B	3H5A eet 1 of	1

Drilled by AH Logged by AH Checked by	Equipment and Meth Rotary Open Hole 156	nods O mm diameter from (0.00m ta 5.00m.	Ground Level National Grid Coordinates	
Samples and Tests)		Strata	1,	 -
Depth TCR SCR If RQD	Records	Date Time Casing Water	Description	Depth,Level (Thickness)	Legend
RQD		21/05/2001		(mickness)	l la
				=	
				_	
				_	
]	
_					
-					
<u>-</u>				_	
_					
			Open Hole to 5.00m.Unable to carry on due to gravel and cobbles	(5.00pen)	
_				(3.00pen)	
_				_	-
=				-	
_			•	_	
				\exists	
-					
_]	
		21/05/2001			
_			EXPLORATORY HOLE STORAT FOR	5.00	
_			EXPLORATORY HOLE ENDS AT 5.00 m.	7	
_				_	
				1	
				_	
_	-				
-				_	
_				=	
_			1		
				=	
-				=	
=				4	
-					
			•		
-		•		=	
-				=	
-					
_					
_				=	
				=	
-			T .	∄	
Groundwater			Remarks	1	
Dry	·		Nemarks Open hole to 5.00m.Unable to continue due to gravel and cobbles Hole backfilt: 0.00m to 5.00m Arisings (a).		
Notes : For explanation of symbol abbreviations see key sheet. All d	Is and	Project	BYRKLEY PARK	Borehole	
appreviations see key sheet. All devels in metres. Stratum thickness in depth column.	iepins and reduced ss given in brackets		121070 Football Association	E	H5B eet 1 of 1

Drilled by Equipment and Methods Ground Level Equipment and methods. Cable Percussion 150 mm diameter from 0,00m to 7,10m, Rotary Cored 150 mm diameter from 7,00m to 17,40m. Set up on 8H5A which was open holed to install rotary casing to 4,80m prior to BH5B rotary hole Logged by ML National Grid Checked by Coordinates Samples and Tests Strata Type & No. Depth Date Time Depth, Level Records Description Legend Casing Water (Thickness) 22/05/2001 MADE GROUND: Loose brown claybound fill with (3.20)brick(driller's description) Below 2,00m; Stiff. Firm to stiff brown boulder CLAY, round cobbles noted ,mudstone lenses 6.30m to 6.40m(driller's (3.70) description) Weathered grey MUDSTONE (driller's description) 22/05/2001 4.80 7.00 Light greyish brown thinly to thickly laminated slightly to moderately MUDSTONE/SILTSTONE, very weak to weak. Closely to very closely spaced,occasional brown staining,locally clayey From 11.20m:very closely spaced,locally recovered as gravel with brown staining (10.40) From 11.60m slightly weathered ,closely spaced From 12.00m to 12.10m:open inclined (60°) discontinuity with orange brown staining Recovered as gravel from 12.20m to 12.30m and 12,50m to 12,80m From 9.90m to 10.40m:open 9.50 - 11.00m 100% subvertical discontinuity with yellowish brown staining Depth Records Date Casing Time Water]f Groundwater Piezometer installed .tip at 9.00m,sand filter from 7.10m to 9.10m Hole backfill: 0.00m to 6.00m Arisings (a), . Surface protection: Stop Cock Cover Standpipe Piezometer installed, 19mm diameter, response zone from 7.10m to 9.10m. No groundwater encountered. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets BYRKLEY PARK Project Borehole 5B 121070 Project no. Football Association Sheet 1 of 2 Carried out for

											n Associates
	Lo	lled by gged by ecked by	AH ML RP			Equipment and Meth See sheet 1	hods			Ground Level National Grid Coordinates	
Ì	Si	ample	s ai	nd T	ests				Strata		· ·
		Depth		TCR SCR RQD	lî -	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
		9.50 - 11.	00m	90 83 27	50 125 200	100%			From 10.40m to 15.00m:light grey From 11.00m to 11.20m:recovered as grey clayey sandy gravel and cobbles		
	-	11.00 - 1	1.15		10 30 50	S,SW = 0,50 25,/50 for 70mm			- - - - - - -		
	- - - -	11.00 - 12.	.50m	87 73 20	50 75 100	100%			- - - -		
		12.50 - 12	2.65			S,SW = 0,50 25,/50 for 78mm			=		
`		12.50 - 13	.70m	92 67 17	50 85 120	100%			From 13,40m to 13,45m:openinclined(45*)discontinuity with		
	_ _ _ _	13,70 - 13	3.85			S,SW = 0,50 25,/50 for 52mm			As sheet 1 Inclined (45*) Asscantinuity with Assheet 1 Inclined (45*) Asscantinuity with Assault Assau	(10.40pen)	
	- - - -	13.70 - 14 14.70 - 1		83 75 33	50 100 150	100% S.SW = 0.50			- - - -		
	- - - -	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				S, SW = 0,50 25,/50 for 14mm			Below 15.00m; reddish brown locally grey, slightly weathered, thickly laminated closety spaced		
				38	50 85 120				From 15,50m to 15,65m;open subvertical discontinuity		
, . '*		14.90 - 17	'.40m	30 16			23/05/200	1			
		17.40 - 1	7.49	The state of the s		S,SW = 0,50 25,50 for 10mm	4.80 23/05/200 4.80	1	EXPLORATORY HOLE ENDS AT 17.40 m.	17.40	
11/07/2001 15:36:13 ESGLog v2:09	Gr	oundwate	er			<u>.</u>			Remarks		
1/07/2001 15:3	ab lev in	otes : For a breviation rels in mel depth colu tale 1 : 50	is sae l tres. Si umn.	key she	et. All o	ls and depths and reduced ss given in brackets	Project no Project no Carried o	o. 1	BYRKLEY PARK 121070 -oolbalt Association	Borehole Sh	5B eet 2 of 2

7	Orilled by ' Mi	4	Equipment and Meth	ods				und Level	+116.86	
1	ogged by GE Checked by RF)	Cable Percussion 150		er from 0.		Nati	onal Grid rdinates	E 16414 N 23353	.57
	Samples a	nd Tests	3			Strata				
	Depth	Type & No.	Records	Date Casing	Time Water	Description		h,Level :kлess)	Legeno	
	0.40 - 1.00	B1		15/05/2001	1	Turf over TOPSOIL (drilers description).	-	0.40)		a
E	-					MADE GROUND: Dark brown gravelly clay. Gravel is angular to subrounded of ash and brick fragments.		+116.46 0.50)		
E	1.00 - 1.45	U2	75 blows				0.90	+115.96	م د د د د د د د د د د د د د د د د د د د	
	1.55 1.60 - 2.05	D3 U4	82 blows	1.50	dry					
	2.15 2.20 - 2.65	05 U6	130 blows 100mm recovered	1.50	dry	·				
	2.75 2.80 - 3.25	D7 U8	150 blows	1.50	dry				,	
				15/05/200 2.50 16/05/200 2.50	dry	Soft brown gravelly CLAY. Gravel is subangular and subrounded fine to coarse.	. Ħ '	4.90)		
E	3,35 3,40 - 3,85 _ 3,95	09 U10 D11	150 blows	3.00	dry					
	4.00 - 4.45	U12	150 blows	4.00	dry					
	4,55 4,60 ÷ 5,05	D13 U14	150 blows	4.60	dry					
	5.15 5.20 - 5.65	D15 U16	150 blows	5.00	dry					b
	5.75 5.80 - 6.25 5.80 - 6.30	D17 U D18	150 blows No recovery	5,00	dry	Weak grey MUDSTONE with traces of orange sandstone noted by driller.	\exists	+111.06 (0.90)		
	6.70	D10		16/05/200 5.00	1 dry	Weak weathered grey MUDSTONE.		+110.16		
-	6.89 - 6.82	019 020	S,SW = 0 25 for 10mm,50 for 10mm	5.00	dry	EXPLORATORY HOLE ENDS AT 6.84 m.	- 6,84 	+110.02		
	- - - - -			7						
						-				
	- - - - -									
~ 1	Groundwater No groundwater e	encoulered,				Remarks Chiselling: 5.70m to 6.80m 60minutes Hole backfill: 0.00m to 5.10m Arisings (a), 5.10m to 6.10m Bentonite (b Standpipa Piezometer installed, 19mm diameter, response zone from 6). Surface (10m to 6.8	protection ; 4m.	Stop Cock C	aver
01 15;36:17		key sheet. Alf	depths and reduced	Project		BYRKLEY PARK	Во	orehole		
1/07/20	levels in metres. Sin depth column. Scale 1:50	Stratum thickne	ess given in brackets	Project n Carried o		121070 Football Association		Sh	eet 1 of 1	

Drilled by Equipment and Methods
Cable Percussion 150 mm diameter from 0.00m to 7,70m. Ground Level +114.71 m OD Logged by ASH E 16618.88 National Grid Checked by RP Coordinates N 23416.83 Samples and Tests Strata Depth Туре & No. Records Date Time Depth, Level Description Legend Casing Water (Thickness) 15/05/2001 Turf over loose brown TOPSOIL. 0.40 - 1.00 1.00 - 1.45U2 79 blows 338mm recovered Stiff to very stiff brown gravelly CLAY. Gravel 1.55 D3 is subangular and subrounded fine to coarse. (2.50)With subrounded to rounded cobbles. 2.00 - 2.45 D4 1.50 2.00 - 3.00 85 2.90 +111.81 3.00 - 3.45 U6 140 blows 3.00 dry 3.55 D7 Relow 4.00m; With occasioant 4.00 - 4.45 D8 S,SW = 0,N=26 4,8/7,6,6,7 pockets of blue grey clay to 2mm. 3.00 dry 4.00 - 5.00 89 5.00 - 5.45 U10 150 blows 3.00 Stiff to very stiff brown gravelly CLAY. Gravel is subangular and subrounded fine to coarse. (4.70)6.00 - 6.45 D12 S,SW = 0,N=32 6,6/8,8,8,8 3.00 drv 6.00 - 7.00 813 7,00 - 7,45 125 blows No recovery 1114 3.00 dry 7.00 - 7.50 B15 15/05/2001 3.00 Weak weathered grey MUDSTONE +107.11 7.60 S , Rods bouncing- no recovery. 7.70 3.00 EXPLORATORY HOLE ENDS AT 7.70 m 7.70 +107.01 7.70 **D16** Chiselling: 5.60m to 5.90m 45minutes, 7.60m to 7.70m 60minutes
Hole backfill: 0.00m to 6.00m Arisings (a), 6.00m to 7.00m Bentonite (b). Surface protection: Stop Cock Cover
Standpipe Piezometer installed, 19mm diameter, response zone from 7.00m to 7.70m. No groundwater encountered. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets BYRKLEY PARK Borehole Project 121070 Project no. in depth column Football Association Sheet 1 of 1 Carried out for

Drilled by Equipment and Methods
Cable Percussion 150 mm diameter from 0.00m to 5.47m. Ground Level +120.35 m OD Logged by ASH E 16108,49 National Grid Checked by RP N 23442.28 Coordinates Samples and Tests Strata Depth Type & No. Date Time Records Depth.Level Description Legend Casino Water (Thickness) 23/05/2001 Turf over loose brown granular topsoil. (driller's despeription) (0.35) 0,40 - 1.00 0.35 +120.00 Firm red, orangish brown and light grey mottled slightly sandy gravelly CLAY. Gravet is (0.85)subangular and subrounded fine to coarse 1.00 - 1.45 U2 150 blows 1.20 +119.15 1,55 **D**3 below 2.00m stiff with 110 blows 1.50 2.00 - 2.45 2.00 - 2.50 occasionally much gravel Firm to stiff reddish brown slightly sandy 3.00 - 3.45 U6 150 blows 360mm recovered 1.50 dry gravelly CLAY. Gravel is angular to subrounded fine to coarse and includes grey and reddish (4.10) brown mudstone and siltstone below 3.00m very stiff 3.55 D7 4.00 - 4.45 1JB 150 blows 1.50 dry below 5.00m dark brown with occasional lense of light brown 4.55 D9 150 blows 1.50 Light grey MUDSTONE. Recovered as angular 23/05/2001 -1.50 gravel sized fragments +115.05 5.30 \$,50 25 for 10mm,/50 for 10mm \$,50 25 for 10mm,/50 for 10mm 5.40 - 5.42 ÷114.88 EXPLORATORY HOLE ENDS AT 5.47 m. 5.45 - 5.47 1.50 dry No groundwater encountered Chiselling: 2.20m to 2.40m 30minutes, 5.41m to 5.45m 60minutes Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets BYRKLEY PARK Borehole Project 8 121070 Project no. Football Association Sheet 1 of 1 Carried out for

Orilled by Equipment and Methods
Cable Percussion 150 mm diameter from 0.00m to 5.63m. Ground Level +118.52 m OD Logged by E 16076,57 National Grid Checked by RР Coordinates N 23129,30 Samples and Tests Strata Depth Type & No. Depth,Level Date Time Records Description Legend Casino Water (Thickness) 23/05/2001 MADE GROUND: Turf over loose brown topsoil. (0.30) 0.30 - 1.00 81 (driller's despoription). 0.30 +118.22 Firm reddish brown with bluish grey veining slightly gravelly sandy CLAY with many lenses (1,10) 1.00 - 1.45U2 134 blows of fine medium sand. Gravet is angular and subangular fine to coarse. Firm red, orangish brown and light greyish blue 1.55 D3 (0.50)mottled sandy gravelly CLAY with cobbles and pockets of clayey fine to coarse sand, Gravel 1.90 +116.52 2.00 - 2,45 1,50 1.30 is angular to subrounded fine to coarse. 2.00 - 3.00 3.00 - 3.45 3.00 2,50 C,N=11 3,4/2,3,3,3 3.00 - 4.00 В5 (2.80)Medium dense slightly sandy very clayey subrounded and rounded GRAVEL with cobbles. 3.75 4 00 - 4 45 C,N=15 4,3/3,4,4,4 4.00 4.00 - 4.70 86 Medium dense light brown clayey fine and medium 5.00 - 5.45 4.50 (0.80)5.00 - 5.50 Light grey MUDSTONE. Recovered as angular 23/05/2001 5.50 5.50 +113.02 S,50 25 for 10mm,/50 for 10mm S,50 5.60 - 5.62 5.63 +112.89 EXPLORATORY HOLE ENDS AT 5.63 m. 5.62 - 5.64 5.50 dry Groundwater Remarks No Groundwater Encountered Chiselling: 5.60m to 5.62m 60minutes Borehole Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced BYRKLEY PARK Project 9 121070 levels in metres. Stratum thickness given in brackets Project no. Football Association Sheet 1 of 1 Carried out for

Equipment and Methods Cable Percussion 150 mm diameter from 0.00m to 7,55m. Drilled by MM Ground Level +115.56 m QD Logged by ASH E 16275,14 National Grid Coordinates Checked by RP N 23044.58 Samples and Tests Strata Depth Type & No. Time Depth,Level Records Oate Description Legend Casing Water (Thickness) 16/05/2001 Turf over TOPSOIL (driller's description). (0.40)0.40 - 1.00 **B1** 0.40 1.00 - 1.45 U2 76 blows Stiff brown gravelly CLAY. Gravel is subangular and subrounded fine to coarse occasionally of (1.50)1.55 D3 1.90 +113.66 2.00 - 2.45 U4 96 blows dry 2.55 D5 B.00 3.00 - 3.45 U6 96 blows 3.00 dry 3.55 D7 16/05/2001 3.00 dry 17/05/2001 3.00 3.00 4.00 - 4.45 U8 150 blows 4.55 D9 Stiff to very stiff brown gravelly CLAY. Gravel (5.65pen) is subangular and subrounded fine to coarse. 5.00 - 5.45 U10 150 blows 5.00 dry 5.55 D11 6.00 - 6.45 U12 150 blows 6,00 dry 6.55 D13 7.00 - 7.45 U14 150 blows 6.00 dry 17/05/2001 6.00 dry +108.01 7.55 D15 EXPLORATORY HOLE ENDS AT 7.55 m. Groundwater Chiselling : 4.70m to 4.80m 30minutes, 5.80m to 6.00m 45minutes, 6.80m to 6.90m 30minutes Hole backfill : 0.00m to 7.55m Arisings (a). No groundwater encountered. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets Project BYRKLEY PARK Borehole 10 121070 Football Association Sheet 1 of 1

17/07/2001 10:32:39 ESGLog v2:09

Lo	illed by MN ogged by GD tecked by RP	· [Equipment and Meth Cable Percussion 150	ods mm diamete	er from O.	00m to 6.64m.	Ground Level National Grid Coordinates	
S	amples a	nd Tests				Strata		
	Depth	Туре & №о.	Records	Date Casing	Time Water	Description	Depth,Level (Thickness)	Legend
	0.20 - 1.00 1.50 - 2.00 2.50 - 2.95	B1 B2 U3	135 blows	2.50	йгу	MADE GROUND: Brown slightly clayey sandy angular and subangular fine to coarse gravel. Sand is fine to coarse. With whole, half and fragments of brick.	(2.30) (2.30) 2.30 +116.55	
	2.50 - 3.00 3.00 - 3.45	B4 U5	Na recovery 150 blows 112mm recovered	3.00	dry	, -		
	4.00 4.00 - 4.45 4.55 4.60 - 5.05	D8 U9 D10 U11	125 blows 125 blows 337mm recovered 133 blows 337mm recovered	3.00 11/05/2001 3.00 14/05/2001 3.00 3.00	dry	Firm brown gravelly CLAY. Gravel is subangular and subrounded fine to coarse.	(4.20)	
التنائينات	5.15 5.20 - 5.65 5.75 5.80 - 6.25	D12 U13 D14 U15	140 blows	3.00	dry dry			
	6.35 6.50 - 6.52 6.60 - 6.62	D16 D17 D18	S,SW = 0,50 25 for 10mm,/50 for 10mm 5,SW = 0,50 25 for 10mm,/50 for 10mm	14/05/200 3.00 3.00 3.00	dry dry dry	Weak weathered grey MUDSTONE. EXPLORATORY HOLE ENDS AT 6.64 m.	6.50 +112.35 6.64 +112.21	
	roundwater lo. Struck Beha 1.50m Risi		er 20 mins, Sealed 2.70).).		Remarks Chiselling: 5.15m to 5.20m 30minutes, 6.50m to 6.60m 60minutes Hole backfill: 0.00m to 4.80m Arisings (a), 4.80m to 5.80m Bentonite (b), S Standpipa Piezometer installed, 19mm diameter, response zone from 5.80m	urface protection : n to 6.64m.	Stop Cock Cover
N	otes : For explan	ation of symbo	ls and	Project		BYRKLEY PARK	Borehole	
al	bbreviations see	key sheet. All d	depths and reduced as given in brackets	Project no		121070		12
in	depth column. cale 1 : 50		J	Carried or		Football Association	Sh	eet 1 of 1

Drilled by AH Logged by ASH Checked by RP		Equipment and Met Cable Percussion 156	hods O mm diameter from 0,0	00m to 9.50m. Rotary Cored 150 mm diameter from 9,00m to 17.30m.	Ground Level National Grid Coordinates	+118.70 m OD E 16585,97 N 23510.61
Samples and	d Tests			Strata		
	ype & No.	Records	Date Time Casing Water	Description	Depth,Level (Thickness)	Legend
				MADE GROUND: Loose brown gravelly clay. Gravel is of brick. (driller's description) Firm to stiff brown boulder CLAY with occasional rounded cobbles	(1.95)	
9.00 - 10.50m	67 0 67 0			Stiff reddish brown sandy gravelly cobbly CLAY. Gravel and cobbles are subangular to subrounded fine to coarse including quartz and sandstone From 10.40m: greyish brown with lithorelicts	9.00 +109.70	
Depth	TCR SCR RQD If	Records	Date Time Casing Water			
Groundwater No groundwater end		l	<u>.l. </u>	Remarks Chiselling : 9.30m to 9.50m 45minutes		
Notes: For explana abbreviations see k- levels in metres. Str in depth column. Scale 1: 50	lion of symb ey sheet. All raturn thickn	ols and depths and reduced ess given in brackets	Project no.	BYRKLEY PARK 121070 Football Association	Borehole	12A neet 1 of 2

Drilled by AH Logged by ASH Checked by RP	Equipment and Meti See sheet 1	hods				Ground Level National Grid Coordinates	+118,70 m OD E 16585,97 N 23510,61
Samples and Tes	ls			Strata	L	·· · · · · · · · · · · · · · · · · · ·	
Depth TCR SCR If RQD	Records	1	Time Water	Description		Depth,Level (Thickness)	Legend
9.00 - 10.50m 67 0 67 0	S,SW = 0,50 25,/50 for 85mm			As sheet 1		(1.50) 10,50 +108.20	
90 10 87 25 33 40		e control de la		Grey and reddish brown highly weathered thickly laminated MUDSTONE, recovered as stiff slightly sandy gravelly clay/clayey gravel. Rare dark siltstone interbeds. Locally brown stained Below 11.80m:slightly to moderately weathered, locally slightly clayey		(2.20)	
12.00 - 12.16				Below 12.10m: to 12.20m:gravel and corestones Below 12.20m:slightly weathered, weak, closely to very closely spaced	11111		
12.00 - 13.30m 81 73 23		}		to very closely spaced		12.70 +106.00	
13.30 - 13.44) }						
13.30 - 14.80m 100 47 27	0			Reddish brown, slightly weathered thickly laminated MUDSTONE/SILTSTONE, weak to moderately weak. Closely to very closely spaced subhorizontal discontinuities with occasional brown staining.			
14.80 - 16.30m 87	S,SW = 0,50 25,/50 for 74mm			Below 14.20m:grey slightly weathered, thickly saminated closely to medium spaced Below 14.80m:red brown closely to medium spaced Below 16.40m: medium spaced to 17.10m		(4.60pen)	
16.30 - 16.34	5 SW ≠ 0		-	From 16.90rn to 17.05m:light red brown, grey slightly clayey			
- 1630 - 1730m 85 2	50 for 42mm, 50 50 50				- - - - -		
		23/05/2001		EXPLORATORY HOLE ENDS AT 17.30 m.		17.30 ÷101.40	
					41111111		
Groundwater				Remarks		<u> </u>	1 11
Notes: For explanation of sy abbreviations see key sheet levels in metres. Stratum thi in depth column.	All depths and reduced	Project no		BYRKLEY PARK 121070 Football Association		Borehole	12A theet 2 of 2

Drilled by Equipment and Methods
Cable Percussion 150 mm diameter from 0.00m to 10.70m. Ground Level +118.68 m OD Logged by ASH E 16589,88 National Grid Checked by RP Coordinates N 23510.87 Samples and Tests Strata Depth Type & No. Records Date Time Description Depth,Level Legend Casing Water (Thickness) 24/05/2001 0.30 - 1.00 MADE GROUND: Loose brown clayey gravel. Gravel (2.65) is of brick. (driller's despcription) 2.00 - 2.60 В2 2.65 +116.03 3.00 130 blows 4.00 - 4.45 U5 150 blows 337mm recovered 3.00 4.55 D6 150 blows 360mm recovered 5.00 - 5.45 U7 3.00 dry 5.55 D8 6.00 - 6.45 U9 150 blows 225mm recovered 3.00 ďrv Very stiff reddish brown slightly gravelly CLAY. Gravel is subrouded, fine and medium (7.95) mudstone. 6.55 D10 150 blows 337mm recovered 7.00 - 7.45 U11 3.00 dry 7.55 D12 8.00 - 8.45 150 blows 3.00 dry D14 9.00 - 9.45 150 blows 315mm recovered U15 3,00 dry 9.55 D16 Groundwater Chiselling: 1.20m to 1.40m 30minutes No. Struck Behaviour 1.60m Rising to 1.30m after 20 mins. Sealed 3.00. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets BYRKLEY PARK Project Borehole 13 121070 Project no. Football Association Carried out for Sheet 1 of 2

r	Drilled by Al-	I	Equipment and Me	thods		Ground Level	1440.00
	Logged by AS Checked by RF	,	Equipment and Me See sheet 1			National Grid Coordinates	
I	Samples a	nd Tests			Strata .	<u> </u>	
	Depth	Type & No.	Records	Date Time Casing Water	Description	Depth,Level (Thickness)	Legend
-	10.00 - 10.45 10.00 - 10.20	U18 B17	150 blows	3.00	As sheet 1	(7.95)	
	-	U18 B17	150 blows	24/05/2001	As sheet 1 Soft to firm green slightly gravelly CLAY. Gravel is subrounded to angular, fine to coarse, of mudstone. EXPLORATORY HOLE ENDS AT 10.70 m.	(7.95) 10.60 +108.08 10.70 +107.98	
	_						
	-				· -		
	Groundwater No. Struck Behav			Perior	Remarks		
	Notes : For explana abbreviations see k evels in metres, Str	uon of symbols ey sheet. All de alum thickness	and epths and reduced s given in brackets		YRKLEY PARK	Borehole	13
ľ	eveis in meires, su n depth column,	awiii elickness	given in prackets		21070 potball Association		,,

Equipment and Methods
Cable Percussion 150 mm diameter from 0.00m to 3.00m. Orilled by Ground Level +114.43 m OD Logged by ASH E 16626.52 National Grid Checked by Coordinates N 23669.01 Samples and Tests Strata Type & No. Depth,Level Description Legend Date Records Time (Thickness) Water Casing 10/05/2001 Turf over loose brown subsait (driller's (0.30)description). 0.30 Firm to stiff brown boulder CLAY with small (1.20)round cobbles (driller's description). 1.50 +112.93 Firm grey mottled MUDSTONE (driller's (0.95)Weathered grey MUDSTONE (driller's (0.55pen) 10/05/2001 2.00 description). 3.00 +111.43 EXPLORATORY HOLE ENDS AT 3.00 m. Groundwater No samples of strata within borehole taken as piezometer installation only required. Hole backfill: 0.00m to 1.30m Grout (g), 1.30m to 2.30m Bentonite (b). Surface protection: Stop Cock Cover Standpipe Piezometer installed, 19mm diameter, response zone from 2.30m to 3.00m. No. Struck Behaviour 2.40m Rising to 1.90m after 20 mins. Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column.

Scale 1: 50 Project BYRKLEY PARK Borehole 14 121070 Carried out for Football Association Sheet 1 of 1

ENCLOSURE B

Instrumentation Readings

C	1_	_		4
•	п		•	

Groundwater Levels in Piezometers

1

Instrument Monitoring

11 12	Type	Tip Depth (m BGL)			Water	Above Tip	
12	SP		Date	Time	(m BGL)	(m)	
		3.74	24/05/2001		1.47		
			12/06/2001		2.53		
	SP	6.64	24/05/2001		5.23		<u> </u>
			12/06/2001		4.80		
14	SP	3.00	24/05/2001		1.21		
			12/06/2001		1.06		
1A	SP	4.50	24/05/2001		2.84	-	
			,12/06/2001		3.00		
2R	SP	7.00	24/05/2001		2.72		
			12/06/2001		3.08		
5B	SP	9.00	24/05/2001		7.20		
			12/06/2001		7.00	-	:
6	SP	6.83	24/05/2001		2.12		
			12/06/2001		3.19		
7	SP	7.70	24/05/2001		6.92		
			12/06/2001	<u> </u>	7.51		
						-	
			·				

ype: SP - Standpipe, SPIE - Standpipe Piezometer, HPIE - Hydraulic Piezometer, PPIE - Pneumatic Piezometer, EPIE - Vibrating Wire Piezometer, PWEL - Pumping Well

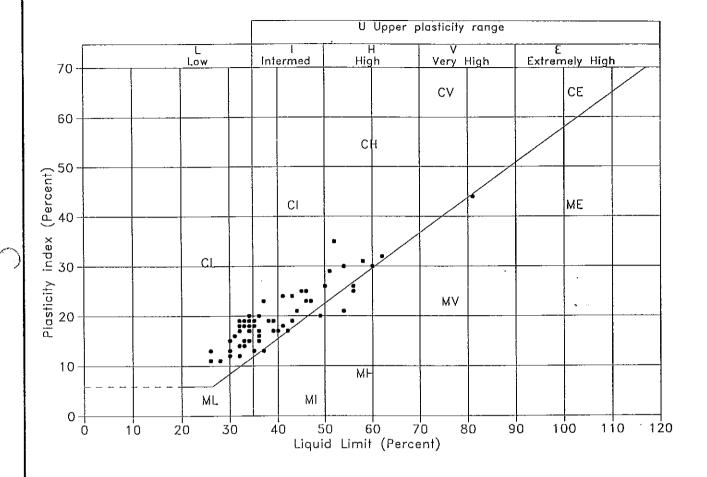
Project no.

Carried out for Football Association

Sheet 1

ENCLOSURE C

Laboratory Test Results


	Sheet
List of Symbols	Key Sheet
Liquid Limit versus Plasticity Index Plot	LL v PI
Summary of Tests Carried Out including Sample Descriptions and Results of	
Plasticity Index Tests and Natural Moisture Content Determinations	L1/1 to L1/20
Natural Wet Density Determinations	
Specific Gravity Determinations	
Unconsolidated Undrained Triaxial Compression Tests	
Hand Vane Tests	
Sulphate Concentration Tests	
pH Value Determinations	
Results of Particle Size Distribution Tests	L2/1 to L2/31
Results of Moisture Condition Value Tests, Compaction and California Bearing Ratio Tests	L3/1 to L3/42/1
Results of Consolidation Tests (Undisturbed)	L4/1 to L4/30
Results of Consolidation Tests (Remoulded using 2.5kg rammer unless indicated otherwise)	L5/1 to L5/104
Results of Contaminant Analyses	EFS/012301 EFS/012808

Key to Laboratory Test Results

		Exploration Associates
ñ	Undisturbed Sample	
P	Piston Sample	
TWS	Thin Wall Sample	
В	Bulk Sample - Disturbed	
D	Jar Sample - Disturbed	
W	Water Sample	
pН	Acidity/Alkalinity Index	
SO₃	% - Total Sulphate Content (acid soluble)	
SO₃	g/ltr - Water Soluble Sulphate (Water or 2:1 Aqueous Soil	
	Extract)	
+ .	Calcareous Reaction	
Cl	Chloride Content	
l _p	Plasticity Index	
<425	% of material in sample passing 425 micron sieve	
W_L	Liquid Limit	
W_p	Plastic Limit	
W	Water Content	
NP	Non Plastic	
γ _b	Bulk Density	
γd	Dry Density	
Ps	Particle Density	
U/D	Undrained/Drained Triaxial	
U/C	Unconsolidated/Consolidated Triaxial	
T/M	Single Stage/Multistage Triaxial	
100/38	Sample Diameter (mm)	
REM	Remoulded Triaxial Test Specimen	
TST	Triaxial Suction Test	
V	Vane Test	
DSB	Drained Shear Box	
RSB	Residual Shear Box	
RS	Ring Shear	
σ_3	Cell Pressure	
σ_1 - σ_3	Deviator Stress	
С	Cohesion	
C'	Effective Cohesion Intercept	
ϕ	Angle of Shearing Resistance - Degrees	
φ'	Effective Angle of Shearing Resistance	
ε f	Strain at Failure	
*	Failed under 1st Load	
**	Failed under 2nd Load	
#	Untestable	
##	Excessive Strain	
p'o	Effective Overburden Pressure	
m _v	Coefficient of Volume Decrease	
C _v	Coefficient of Consolidation	
Opt	Optimum	
Nat	Natural	
Std	Standard Compaction - 2.5kg Rammer (¶ CBR)	
Hvy	Heavy Compaction - 4.5kg Rammer (§ CBR)	
Vib	Vibratory Compaction	
CBR	California Bearing Ratio	
Sat m.c.	Saturation Moisture Content	
MCV	Moisture Condition Value	

Notes:	Project	National Football Centre, Byrkley Park	Figure
	Project No. Carried out for	121070 The Football Association	

Liquid Limit Versus Plasticity Index

Project_{BYRKLEY PARK}
Football Association

Contract ₁₂₁₀₇₀

Exploration Associates

Figure LLVPI

(E) Exploration Associates

								-	Ī	0 4 1		0		OVACO.	NOITONGA					
			SAMPLE DETAILS	S S	SSIFIC	CLASSIFICATION	N TESTS	(C)	STR	STRENGTH		IDATION		EARTH	EARTHWORKS		붕	CHEMICAL	:	OTHER
하 의	Depth 8	Type No.	Description	×425 F	Y S & S C C C C C C C C C C C C C C C C C	2 ≥ ∞	Not Water %	γ _b Test Mg/m Type	ρ ^C - X γ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	0 0 A A	Ø Ø Ø	m _V C _V Type/ m²/MN m²/yr Mould		CBR Wo	Water 7 _d N	N W C	# <u></u>	SO ₃ SO ₃ (SO ₄) Soll Water % 9/ltr		Test Remarks and Notes
	0.30 - 0.30	<u>m</u>	Red cand orangish brown with a little grey mottling slightly sandy gravelly CLAY)) 5.9	(0.04)		
	1.00 - 1.45		Stiff red and orangish brown with a little grey mottling slightly sandy gravelly CLAY	82% 42 43	425 Sieve 19 24	ve 15	2.25	22 UUT 102	8	88									Failure Mo	Failure Mode: Plastic
_	2.00 - 3.00	ω,	Reddish brown with bluish grey veining slightly sandy very gravelly CLAY														8.3	(0.04)		
_	3.00 - 3.45	<u> </u>	Reddish brown with bluish grey veining slightiy sandy very gravelly CLAY	81% 42 32	425 Sieve	ve 16		UUT 102		Untestable										
77	1.00 - 1.45	⊃	Orangish brown and grey mottled CLAY			23		.5. 38 .5. 33												
т-	0.3 - 1.00		Dark yellowish brown and grey mottled slightly sandy slightly gravelly CLAY	<u>.</u>													4.4	(0.04)		
æ	1.00 - 1.45	. D	Stiff reddish brown with grey mottling sandy gravelly CLAY	73% 42	425 Sieve 19 14	4e 15	2.14	14 UUT 102		85									Failure Mc	railure Mode: Plastic
4	1.00 - 1.45	<u> </u>	Soft red and orangish brown with light grey mottling slightly gravelly sandy CLAY	6 1% 42	42 Sieve	7e 14	2.13	13 UUT 102	8	8									Failure Mode: Comp Ps = 2.62 measured	Failure Mode: Compound Ps ≃ 2.62 measured
4	3.00 - 3.45	∍	Soft reddish brown slightly sandy gravelly CLAY	32 42	13 19	9 4e	2.23	22 UUT 102	Ŕ	54									Failure Mo	failure Mode: Compound
Ž	NOTES SHEAR STRENGTH	NGTA		et		P.W.P.	A with P.W.P. measurement	rement	Diame	Diameter in mm	c	Project	oject RYPKI FY PARK						Contract	t 12 1070
	CONSOLIDATION COMPACTION EARTHWORKS	ATION SXS XS	i. Single Stage Irlaxial Mt. Mullistage Irlaxial New. Nemoulded NEC. Reconstituted - m _y and c _y given for load increment of 100kPa above assumed overburden pressure - Stat. 2.5kg Hvy: 4.5kg Vlb: Vibratory Maula - P. Practor C. CBR - 7 _d (max) Waters, (Optimum) «Natural» CBR - 1: Top B: Base A: Average REL - Reic	noulded turned or tor C: e A: A:	KEC: 1 /erburd CBR /erage	en presi 7 d (r	KEC: Reconstituted V: Vane is erburden pressure. BR $\gamma_{\rm d}$ (max) erage REL - Relationship Test	v: vane	s SB; S	sB; Shear box (resid)	(resid)	Footba	Football Association	iation				Form 40/4	Sheet	L1/1
												-								

Associates
ration A
Explo
W

		**************************************	SAMPLE DETAILS	72	\SSIFIC	CLASSIFICATION TESTS	J TEST	S	STR	SHEAR	\ <u> </u>	CONSOL- IDATION	Q m	COMPACTION	ON RKS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CHEMICAL	OTHER	
하	Depth 3	Z N N	Description	<425 WL %	57 ≯ G G %	<u>ā</u>	Not Water % Mg/	γ _b Test Mg/m Type	ب م م م 0 م	O O O	3, 2 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	m _V C _V Type/ m ² /MN m ² /yr Mould		water %	Y _d MCV	FQ.	SO ₃ SO ₃ (SO ₄) Soll Water % 9/ltr	Test Remarks and Notes	. ee
r.	0.20 - 0.90	ω	MADE GROUND: Greyish brown slightly gravelly very sandy clay		-											8.1 ((0.02)		
.v.	1.00 - 1.45		MADE GROUND: Very soft greyish brown slightly gravelly very sandy cłay	55% <i>4</i>	425 425 14 14	Sieve 11 23		1.99 UUT 102	500	21					·			Failure Mode: Compound	
w	2.00 - 2.90		MADE GROUND: Greyish brown slightly gravelly very sandy clay													9.0	(0.04)		
tra	3.00 - 3.45		Stiff reddish brown sandy gravelly CLAY	37	χ ς - χ <u>ς</u>	Si eve 18 23		2.06 UUT	200	84								Failure Mode: Plastic Ps = 2.67 measured	
ιΩ +	5.00 - 5.45		Very stiff reddish brown sandy gravelly CLAY	34	4Z5 4Z Sic	Sieve 11		1.97 UUT 102	500	163								Failure Mode: Plastic	
9	0.40 - 1.00	ω	MADE GROUND: Dark brown gravelly clay													6.8	(0.04)	,	
9	1.00 - 1.45	□	Brown gravelly CLAY	79%.	425 Sic	Si eve 19		UUT 102		Untestable					·				
	1.60 - 2.05	<u> </u>	Brown gravelly CLAY	% 83 8 83	75 77	Sieve 10		UUT 102		Untestable									
۰	2.20 - 2.65	<u> </u>	Firm brown gravelly CLAY	32	12 S	Sieve 15	-	2.18 UUT 102	200	69								Failure Mode: Plastic Ps = 2.61 measured	
9	2.80 - 3.25		Very stiff brown gravelly CLAY	8 % 8	455 17	Sieve 13	8.9	2.18 UUT	200	500								Failure Mode: Plastic	
ž	NOTES SHEAR STRENGTH	NGTH	For full explanation c	eet Drainec		with P.W.P. measurement	, meası	rement		Dlameter in mm		Project BYRG FY PARK	P. A. R.					Contract	
	CONSOLIDATION COMPACTION EARTHWORKS	ATION KS KS	1: Single Stage Triaxial M: Mullistage Triaxial REM: Remoulded REC: Reconstituted $I_{\rm c}$ m, and c, given for load increment of 100kPa above assumed overburden pressure . Std: 2.5kg Hvy: 4.5kg Vib: Vibratory Mould- P: Proctor C: CBR $I_{\rm c}$ (max) Water% (Optimum) «Nortural» CBR - T: Tap B: Bose A: Average REL - Reit	moulde sumed ctor C	overbur CBR Average	REC: Reconstituted V: Vane erburden pressure JBR 7d (max) reroge REL - Relationship Ter	sure max) Relati	itituted V. Vane s ssure (max) - Relationship Test		SB: Shear Box (resid)	esig)	Footbal	Football Association	t i on			Form 40/4	Sheet L1/2	

Exploration Associates		
tion /	ociates	
ij	Ass(
🖺 Explora	ition	
	plora	
	EX	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Û	

			SAMPLE DETAILS	CLASSIFICATION TESTS	SHEAR	CONSOL- COMPACTION IDATION EARTHWORKS	CHEMICAL	OTHER
Hole	Depth	Type No.	Ype Description	425 Prep Nat Yb Wafer Yb WG 9% Mg/n	γ 1est σ _n p _o C' Ø' Mg/m 1γpe kPa kPa Deg.	m _V c _V type/ CBR Water γ_d MCV m_s^2/MN m $^2/MN$ m $^2/M$ Mould % % Mg/m	SO ₃ SO ₃ SO ₄ SO ₄ SO ₄ SO ₄ SO ₄ Woter % g/ltr	Test Remarks and Notes
<u> </u>	3.40 - 3.85	2 2	Very stiff brown gravelly CLAY	70% 425 Sieve 12 2.26 33 !4 !9	. UUT 200 254			Failure Mode: Plastic Ps = 2.66 measured
9	4.60 - 5.05	Σ Σ	Brown gravelly CLAY	2.37 7.1 DD=2.21				
9	5.20 - 5.65	25	Very stiff brown gravelly CLAY	81% 425 Sieve 11 2.27	, UUT 200 252 102			Failure Mode: Brittle
7	0.40 ~ 1.00		Brown gravelly CLAY		-		7.0 (0.02)	
۰,	1.00 ~ 1.45		Firm brown gravelly CLAY	67% 425 Sieve 17 2.02 41 23 18	2 UUT 200 71			Failure Mode: Brittle
~	2.00 - 2.45	<u>د</u>	Brown gravelly CLAY				7.9 (0.04)	
	3.00 - 3.45	ν̄ 	Very stiff brown gravelly CLAY	922 425 Sieve 16 2.16 41 17 24	102 240			Failure Mode: Plastic Ps = 2.71 measured
۲	5.00 - 5.45	ر ت	Stiff brown gravelly CLAY	81% 425 Sieve 20 2.07 37 24 13	102 320 92			failure Mode: Brittie
^	7.00 - 7.45		Brown gravelly CLAY	524 425 Sieve 35 17 18 12				
æ .	1.00 - 1.45	. ⊃	Red, orangish brown and light grey mottled slightly sandy gravelly CLAY	2,13 18 DD=1.80	m 8			
ž	NOTES SHEAR STRENGTH	RENGT		iet Dydined A with P.W.P. medsurement nouded REC: Reconstituted V: Vane	ement Dlameter in mm : Vane SB: Shear Box (resid)	Project BYRKLEY PARK		Contract 121070
	CONSOLIDATION COMPACTION EARTHWORKS	DATIO TION SRKS	r ı	sumed overburden pressure stor C: CBR γ_{cd} (max) ie A: Average REL - Relation	ıship Test	Football Association	Form 40/4	Sheet L1/3

Exploration A	Exploration A	ssociates)));;;;)))
Explo	Explo	ration A	
	VU.	Fxplc	

OTHER	Test Remarks and Notes		Failure Mode: Brittle				UUT - Failed Fâilure Mode: Brittle			Failure Mode: Plastic		Contract 121070	Sheet LI/4
CHEMICAL	SO ₃ SO ₃ (SO ₄)					(0.02)		(+0.0) 6.9					Form 40/4
COMPACTION EARTHWORKS	Comp Type/ CBR Water γ_{ed}^{-1} MCV Mould % % Mg/m											ARK	Football Association
CONSOL- IDATION	т, с, т²/мм т²/уг									·		Project BYRKLEY PARK	
SHEAR	Test on po C Ø Type KPa KPa Deg.		UUT 200 123				UUT 200 54		UUT Untestable	UUT 200 106	UUT Untestable	ent Diameter in mm	p Test
ATION TESTS	Not $\gamma_{\rm b}$ water 3 Mg/m	,e 3 14	e 13 1.93	2. 16 15 DD=1.88	91		2.05		=	14 2.28	=	A with P.W.P. measurement	. 51
CLASSIFICAT	425 Prep Wp IP % %	834 425 Sleve 35 16 19	82%, 42% Siev. 36 21 15				92X 425 Sieve 56 3! 25		72x 425 Sieve 26 13 13	79% 425 Sieve 30 18 12	86% 425 Sieve 26 15 11		ssumed overburd ctor C: CBR ise A: Average
SAMPLE DETAILS	Description	Reddish brown slightly sandy gravelly CLAY	Reddish brown slightly sandy gravelly CLAY	Reddish brown slightly sandy gravelly CLAY	Reddish brown slightiy sandy gravelly CLAY	Reddish brown with bluish grey veining slightly gravelly sandy CLAY	Firm reddish brown with bluish grey veining slightly gravelly sandy CLAY	Slightly sandy very clayey GRAVEL	Brown gravelly CLAY	Stiff brown gravelly CLAY	Brown gravelly CLAY	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undained/Drained	
	No.	D	23	=	э	ω		B	2	>	ə	NGTH	NON SX
	Depth 3	2.00 - 2.45	3.00 - 3.45	4.00 - 4.45	5,00 - 5,45	0.30 - 1.00	1.00 - 1.45	2.00 - 3.00	4.00 - 4.45	5.00 - 5.45	6.00 - 6.45	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	5 6 6	8	8	ω	ω	۰,	6	6	01	01	0	Z	

S
ates
ā
ö
ŏ
SSO(
9
4
⊏
.0
7
Ö
O
ם
\times
Ш
(1)

OTHER	Test Remarks and Notes								·			Contract 121070	Sheet LI/5
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) pH Soil Water % g/ltr		6.3 (0.04)	7.8 (0.04)									Form 40/4
COMPACTION EARTHWORKS	Comp. Type/, CBR Water γ_d MCV Mauld % % Mg/m3											PA RK	Football Association
CONSOL- IDATION	my cy									-		Project BYRKLEY PARK	
SHEAR STRENGTH	7 ₃ С Ø Type кРа кРа Deg.											nent Diometer in mm Vone SB: Sheor Box (resid)	nip Test
CLASSIFICATION TESTS	Prep Nat Ty Wp Ip Woter Tb % Mg/m 3	2.34 10 DD=2.13			425 Sieve 19 19 34	425 Sieve 1.79 14 19 19 DD=1.50	4≤5 Sieve 2.30 15 16 12 DD=2.05	425 Sieve 1.94 18 15 27 DD=1.53	425 Sieve 15 19 19	425 Sieve 2.26	425 Sieve	d A with P.W.P. measurement	overburden pressure :: CBR $\gamma_{\rm d}$ (max) Average REL - Relations
ਹ 	<425 WL %				70%	87%	85%	84%	34.	86% 32	84 X	key sheet rained/Drained FM: Remoulde	bove assumed - P; Proctor C
SAMPLE DETAILS	Description	Brown gravelly CLAY	Brown gravelly CLAY	Green and greyish brown mottled MUDSTONE	Brown gravelly CLAY	Brown graveliy CLAY	Brown gravelly CLAY	Brown gravelly CLAY	i. Brown gravelly CLAY	Brown gravelly CLAY	Reddish brown slightly gravelly CLAY	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undrolned A with P.W.P. measurement - stand stand flowle M. Multistand Flowle FRY. Perconstituted V. Yane	
	Ype No.	3	8	Δ.	>	<u> </u>		<u> </u>	5	<u> </u>	<u> </u>	VGTH	NON S
	Depth m	7.00 - 7.45	0.30 - 1.00	3.50 - 3.70	2.50 - 2.95	3.00 - 3.45	3.50 - 3.95	4.00 ~ 4.45	4.60 - 5.05	5.80 - 6.25	3.00 - 3.45	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	T. O. B.	<u>e</u>	=	=	15	12	. 12	21	12	12	<u> </u>	ž	

	u.	
	ň	
	ř	
	7	
•	7	:
	'n	
	_	,
	Ų.	,
	0055Q	,
	◁	
	_	
	Ξ	
	C)
:	F	;
	π	3
	느	•
	C)
•	~	,
	₹	7
,	7	ì
ı	_	
_	_	`
r	Ŧ	Ŧ

			SAMPLE DETAILS	CLASSIFICATION TESTS	FICATI	ON TE	STS	S STI	SHEAR		CONSOL- IDATION	구 ¤	85	COMPACTION EARTHWORKS	TION SRKS	Ū	CHEMICAL	Ye	OTHER	
한 -	Depth B	T V De	Description	<425 Prep WL Wp % %	σ	Nat Water %	γ _b Te	Test on Po	ν ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	Ø	5 2t NM N	Comp C _V Type/ m ² /yr Mould	np be/ CBR uld %	Water	Ya MCV	품 >>	\$03 (\$04) \$0ii	sO ₃ (sO ₄) Water g/Itr	Test Remarks and Notes	otes
13	4.00 - 4.45		Reddish brown slightly gravelly CLAY	86% 425 34 19	Sieve 15	61	2.35 X=1.97	1			<u> </u>					<u></u>				
- 13	5.00 - 5.45		Reddish brown slightly gravelly CLAY	86% 425 32 14	Sieve 18	7 2 2	2.48 DD=2.18													
Ξ	6.00 - 6.45	<u> </u>	Reddish brown slightly gravelly CLAY	87% 425 33 IS	Sieve 18	- 8	2.00 DD=1.78						- ,							
<u>m</u>	7.00 - 7.45		Reddish brown slightly gravelly CLAY	84% 425 34 16	Sieve 18	2	1.99 00=1.74													
<u></u>	8,00 - 8,45		Reddish brown slightly gravelly CLAY	87% Other 32 18	4	9.2 00	2.09 00=1.91						<u>-</u>					· · · · · ·		
<u>E</u>	9.00 - 9.45		Reddish brown slightly gravelly CLAY	88% 425 34 IS	Sieve 19	<u> </u>	1.66 DD=1.40												,	
<u>e</u>	10.00- 10.45	_ =	Reddish brown slightly gravelly CLAY	89% 425	Si eve 18	2					, ,									
17.	1.20 - 1.30	۵	Orangish grey sandy gravelly CLAY	·		91									····					
					··				 	,										
Z	NOTES SHEAR STRENGTH	NGTH	,		× tih №	W.P. me	A with P.W.P, medsurement		Dlameter in mm	mr.	Prc)ject BYRKLEY PARK	¥						Contract 121070	0
	CONSOLIDATION COMPACTION EARTHWORKS	ATION SA SS	1: Single Stage Haxia M: Multistage Haxia Rem., Rentaurae Mc.: Neconstituted V. 1900. 1. m., and c., gliven for food increment of 100kPa above assumed overburden pressure 2.5kg Hvy: 4.5kg VIb: Vibratory Mould-P: Practar C: CBR 7 _d (max) Water% (Optimum) <notucis -="" a:="" average="" b:="" base="" cbr="" rel="" relationship="" t:="" td="" test<="" top=""><td>issumed over</td><td>burden R Y age R</td><td>pressure (max)</td><td>ationship</td><td>o Test</td><td>5</td><td></td><td></td><td>Football Association</td><td>ssociat</td><td><u>e</u></td><td></td><td></td><td>For</td><td>Form 40/4</td><td>Sheet LI/6</td><td></td></notucis>	issumed over	burden R Y age R	pressure (max)	ationship	o Test	5			Football Association	ssociat	<u>e</u>			For	Form 40/4	Sheet LI/6	

8
3£
-:5
ŏ
SSI
ă
Ė
<u>.</u>
äŧ
<u>~</u>
<u>o</u>
⊕.
யி
$\overline{}$
(K I 3)

<u> </u>			SAMPLE DETAILS	CLASSIFICATION TESTS	S STRENGTH	CONSOL- IDATION	COMPACTION EARTHWORKS	CHEMICAL	OTHER
포 (한	Depth 3	Type No.	Description	425 Prep Not Woter 7 % % Mg.	γ γ C Ø C Ø C Ø Mg/m Type KPo KPo Deg. π	m, c, type/ n²/MN m²/yr Mould	Comp Type/ CBR Water γ_d MCV Mould % % Mg/m.	50 ₃ 50 ₃ (50 ₄) (50 ₄) pH Soll Water % 8/ltr	Test Remarks and Notes
TPT	1.8 - 1.3		Orangish grey sandy gravelly CLAY	787 42 Sieve 15 14 15 14 15 17 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	FEN 50 60 2.0 REN 50 103 2.1 REN 50 39 2.1		Std (15) (1.84) Std 10 1.69 Std 14 1.76 Std 15 1.83 Std 17 1.81 Std 19 1.73 MCV 16 1.91		PSD : CL(/+)S1/SA/GR 31%/ZSk/17% Ccmp/CSR %> ZOmm=2.5 37.5mm= O HCV % > ZOmm = 8.1
T .	2.90 - 3.00	<u>©</u>	Orange and red slightly sandy gravelly CLAY			· · · · · · · · · · · · · · · · · · ·	Hvy (10) (2.09) Hvy (13> 1.99 Hvy (18 1.82 Hvy (16 1.87 Hvy 9.3 2.09 Hvy 9.1 2.07 Hvy (12 1.48 13.6 Hvy (14 1.52 3.0 Hvy (14 1.52 3.0		Comp/CBR %> 20mm=4.8 37.5mm= Ø MCV % > 20mm = 0.0
I dT	3.20 - 3.30	<u>а</u>	Reddish brown sandy gravelly CLAY One large SILTSTONE	80% 425 Steve 36 20 16 14 20					PSD : CL(/+)S1/SA/GR 26x/33x/25x/16x
ž	NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS	NGTI SNON SNON SNON SNON SNON SNON SNON SNO	For full explanation of symbols please see key shee! 1. U/C: Unconsolidated/Consolidated U/D: Undrained/Drained A with P.W.P. mec 1. Single stage Iriaxial M: Mutlistage Triaxial ReM: Remoulded REC: Reconstituted 1. m., and c., given for load increment of 100kPa above assumed overburden pressure 2. stat. 2.5kg Hvy: 4.5kg Via: Vibratory Mould - P: Practor C: CBR 7 (max) 4. water% (Optimum) «Natural» CBR - T: Tap B: Base A: Average REL - Reit	heef dipolar with P.W.P. measurement amoulded REC: Reconstituted V: Vane assumed overburden pressure ractor C: CBR $^{\gamma}_{A}$ (max) dase A: Average REL - Relationship Tes	P. measurement Diameter in mm titrited V: Vane SB: Sheor Box (resid) ssure (max)	Project BYRLEY PARK Football Assa	ject BYRKLEY PARK Football Association	Form 40/4	Contract 121070 Sheet L1/7

Associates
\triangleleft
xploration
Щ
H N

	:	SAMPLE DETAILS	CLASSIFICATION T	ATION	ESTS	SHEAR	CONSOL- IDATION	COMPACTION EARTHWORKS	CHEMICAL	OTHER
Depth Hole	Type No.	Description	4425 Prep Wp Ip %	Not Water	74 Ag/m	1est ₀ , p', c' Ø' Type kPo beg	Ø m, c, 1ype/ Deg. m²/MN m²yr Mould	Comp Type/ CBR Water Y _d MCV Mould % % Mg/m	SO ₃ SO ₃ (SO ₄) (SO ₄) V pH SOII Water % g/lfr	Test Remarks and Notes
TP2A 0.80 - 0.80 TP2A 0.80 - 0.80 TP2A 1.90 - 2.50 TP2A 1.90 - 2.00	B D B D	Orange, red and grey slightly gravelly sandy gravelly CLAY Greyish blue slightly sandy GLAY Bluish grey gravelly CLAY	55 33 Sieve 100% 425 Sieve 25 317 2	8 C & 2 K 9 & 2 Z	2 % C & &	REM 50 179 REM 50 86 REM 50 55 REM 50 41		Std (20) (1.69) Std 10 1.55 Std 10 1.55 Std 11.68 Std 21 1.68 Std 23 1.61 Std 23 1.61 NCV 14 1.91 16.5 NCV 21 1.73 10.3 NCV 22 1.67 8.2 NCV 26 1.57 5.9	ν + ω	PSD : CL(/+)SI/SA/GR 40x/23x/25x/12x Conp/CBR x> 20mm=2.3 37.5nm=1 MCV x > 20mm = 0.0 PSD : CL(/+)SI/SA/GR 27x/73x/13x/0x
NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS	ENGTH SATION FION RKS	For full explanation of symbols please see key sheet 1. U/C: Unconsolidated/Consolidated U/D: Undrained/Drained A with P.W.P. measurement 1. Single Stage Triaxial M: Multistage Triaxial REM: Removided REC: Reconstituted V: Vane S 1. Single Stage Triaxial M: Multistage Triaxial REM: Removided REC: Reconstituted V: Vane S 1. Single Stage Triaxial M: Multistage Triaxial REM: Removided REC: Reconstituted V: Vane S 1. Single Stage Triaxial M: Vane Multistage Triaxial M: Single M: Average REL: Relationship Test	et roined A with coulded REC: Rumed overburde for C: CBR et Average	P.W.P. n econstitu in pressur Yd (mc	A with P.W.P. measurement REC: Reconstituted V: Vane erburden pressure 28R 7d (max)	ant Dicmeter in mm ane SB: Shear Box (resid). p Test	Prc	ject BYRKLEY PARK Football Association	Form 40/4	Contract 121070 Sheet LI/8

S	
Associates	
⇉	
10	
Õ	
Ö	
Ś	
9	
0	
O	
oration	
G	
Ξ.	
$\stackrel{\smile}{=}$	
ਨ	
\times	
Ш	
(e a a	

<u>.</u>			SAMPLE DETAILS	CLA	SSIFIC	CLASSIFICATION T	N TESTS		SHEAR STRENG	SHEAR	0 =	CONSOL- IDATION	2	COR	COMPACTION EARTHWORKS	ION RKS	ΰ	CHEMICAL	H.	OTHER
±	Depth E	1γpe No.	Description	<425 WL %	a w w	<u></u>	Nat 7 Water 7 % Mg/m	Test Type	م م م م آن	υυξ	Ø. m.v. Deg. m ² /Mi	MN m ² /y	m, cv Type/ m²/MN m²/yr Mould	CBR %	Water %	γ _d MCV	Hd.	sO ₃ (sO ₄) so⊪ %	503 (504) Water g/Itr	Test Remarks and Notes
TP4 C	0.30 - 0.40	<u> </u>	Orange mottled yellow slightly gravelly sandy CLAY	90% 4%	% % % 33 %	%) eve 32 28	œ		50 50 50	431 224 175 815			St S		(24) 88 22 22 23 24 25	(1.60) (1.51) (1.58) (1.58)				PSD : CL(/+)SI/SA/GR 49x/22x/22x/7x Comp/C8R x> 20mm=0.9 37 .5nm=1 Comp/CBR x> 20mm=0.9 37 .5nm=1
								######################################	50 50 50	643 — 431 — 175 —		-////	1 /		(B) ((B) ((B) (C) (B) (C) (B) (C) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	1.73 1.73 1.73 1.73 1.74 1.76				
¥P4 C	0.30 - 0.40		Orange mottled yellow slightly sandy gravelly CLAY				 k3													
1P4 C	0.70 - 0.80	ω	Crangish grey slightly sandy slightly gravelly CLAY	28% 1.8	425 Sie	ieve 44 36	<u></u>									<u>-</u>				PSD : CL(/+)S1/SA/GR 75%/19%/5%/1%
184	0.70 - 0.80	<u> </u>	Crangish grey slightly gravelly slightly sandy CLAY			M														
174	1.50 - 1.60	<u>e</u>	Bluish grey slightly sandy gravelly CLAY	89%. 4.	55 25 1	Sieve 17						·· ·· · · · · · · · · · · · · · · · ·							-	PSD : CL(/+)S1/SA/GR 30X/57X/1X/1X
TP4	1.50 - 1.50	9	Bluish grey slightly sandy gravelly CLAY		<u> </u>	8	·								-	·				
NOTES STE	TES SHEAR STRENGTH	NGTH	1	eet Orained noulded	< 5 S S S S S S S	th P.W.f	A with P.W.P. measurement REC: Reconstituted V: Vone	ement ; Vane	Diamet SB: She	Diameter in mm SB: Shear Box (resid)		Project BYRKLE	oject BYRKLEY PARK				<u> </u>			Contract
	CONSOLIDATION COMPACTION EARTHWORKS	ATION SS KS		sumed c	verburd CBR verage	den pre Yd (ssure (max) - Relation	nship Te.	±			Footb	Football Association	ociatio	_			Form	Form 40/4	Sheet L1/9

EX	
W	

(E) Exploration Associates

			SAMPLE DETAILS	GLA	SSIFIC/	CLASSIFICATION TESTS	rests	1 8	SHEAR		CONSOL- IDATION	-j o	8	COMPACTION	TION	Ö	CHEMICAL		OTHER
Hole	Depth	Y D&	Description	425 W. W.	Prep %	Nat Water	γ _b Μ8/m³	řest Type	α α β α α β ο C . κ P α α β ο C .	Ø Ø. D⊕g.	E V	Comp C _v Type/ m ² /yr Mould	Comp Type/ CBR Mauld %	Water %	Y _d MCV	ĕ 8	SO ₃ (SO ₄) Soil %	\$03 (\$04) Water g/ltr	Test Remarks and Notes
1748	8	<u>co</u> .	Grey clayey GPAVEL of mudstone									HV9 HV9 HV9 HV9 HV9 HV9 HV0 HV0 HV0 HV0 HV0 HV0 HV0 HV0 HV0 HV0	HVIJ HVIJ HVIJ HVIJ HVIJ HVIJ HVIJ HVIJ	(15) (23) 23 13 13 10 19 19 12	(1.82) 1.66 1.82 1.80 1.80 1.74 1.2.2 1.44 6.2 1.55 18.0	~ ~ 0 8		8 2 4	Comp/CBR %> 20mm=13.637.5mm= MCV % > 20mm = 0.0 PSD - 10.00
₹. ¥.	0.30 - 0.40 0.30 - 0.40	<u> </u>	Orange slightly gravelly sandy CLAY Orange slightly gravelly sandy CLAY	% _ 	22 29 22 29	27 29												2	40x/27x/26x/6x
Æ	0.70 - 0.80	<u>ca</u>	Dark orangish brown and reddish brown mottled grey sandy gravelly CLAY	44 44	23 21 ve 23 21 ve 24 25 ve 25 21 ve 25	a						<u> </u>	HVY HVY HVY HVY MCV MCV MCV	(11) (19) (19) 14 12 12 12 9.6	(2.01) 1.77 1.95 2.00 2.00 1.95 1.48 10.5 1.46 16.9	જે 4 છે છે		<u>π</u>	PSD : CL(/+)S1/SA/GR 28%/23%/23%/20% Comp/CBR %> 20mm=4.7 37.5mm= MCV % > 20mm = 0.0
Z	NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS	HION NOITS	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undrained/Drained A with P.W.P. measurement D T: Single Stage Triaxial M: Multistage Triaxial REM: Remoulded REC: Reconstituted V: Vane 5 - m _v and c _v given for load increment of 100kPa obove assumed overburden pressure - sta: 2.5kg	eet Drained moulded ssumed o ctor C: ise A: A	A with REC: R verburds CBR verage	A with P.W.P. measurement REC: Reconstituted V: Vane erburden pressure SBR Yd (max) erage REL Relationship Te:	neasuren ntea V: V re xx) Relationst	nent Dik /ane SB: ip Test	Diameter in mm SB: Shear Box (resid)	mm x (resld)	Pro	ject BYRKLEY PARK Football Association	IRK Issociat	80			Form 40/4		Contract 121070 Sheet L1/10

iates
ē
-
_
<u>.13</u>
ပ
0
S
Associ
⋖
_
6
ij
ät
10
$\bar{\alpha}$
Ŧ
9
iii
ш
7

			SAMPLE DETAILS	CLASSIFICATION TE	FICATI	ION TESTS		SHEAR STRENGTH	ე ე	CONSOL- IDATION	űĞ	COMPACTION EARTHWORKS	N SX	CHEMICAL		OTHER
HOIE	Depth n	Type No.	Description	425 Prep W _L Wp % %	<u>a</u>	Nat 7 y y water 7 b y way/m 3	Test Type	ος γ ος γ ος γ ος γ ος γ ος γ ος γ ος γ	Ø "". Ø' "1, My Deg. m ² /M!	c, m ² /yr	Comp Type/ CBR Mould %	Water %	Ya MCV	SO ₃ (SO ₄)	\$03 (\$04) Water g/ltr	Test Remarks and Notes
Ε. Ο	0.70 - 0.80	a	Dark orangish brown and reddish brown mottled grey sandy gravelly CLAY		_	E										
瓦	1.70 - 1.80	ω	Dark reddish brown and grey mottled slightly gravelly sandy CLAY	81% 425 36 16	Sieve 28	91					Hvg	~~~	(2.12)		ш.	PSD : CL(/+)S1/SA/GR 30X/24%/32%/15%
											Hvy Hvy Hvy	22	1.74 2.03 2.12		<u> </u>	Comp/CBR %> 20mm=4.7 37.5mm=0 MCV % > 20mm = 0.0
											HV.II MCV		2.01 1.47 10.3 1.54 4.1			
				<u></u>							ACV ACV	= 8.8 	1.46 15.2 1.48 18.0			•
元 -	1.70 - 1.80	۵	Dark reddish brown and grey slightly sandy gravelly CLAY			13	-									
7 <u>7</u>	3.60 ~ 3.80	8	Slightly gravelly sandy CLAY	85% 425 30 15	Sieve 15	12										PSD : CL(/+)S1/SA/GR 24%/34%/33%/9%
<u> </u>	3.60 - 3.70	a	Reddish brown sandy gravelly CLAY			<u>e</u>										
85	0.30 ~ 0.30	_	Orange and yellow mottled slightiy gravelly sandy CLAY	93% 425 22	Sieve 13	24									<u>a.</u>	PSD : CL(/+)S1/SA/GR 38%/28%/29%/5%
χ <u>ε</u> ο	0.30 - 0.30	۵	Orange and yellow gravelly CLAY			X9										
NOTES	TES SHEAR STRENGTH	Į Į	For full explanation of symbols please see key sheet u/c: Unconsolidated/Consolidated u/D: Undrained/Drained	et roined A	with P.	with P.W.P. measurement	ement Di	Diameter in mm		Project BYRKLEY PARK	PARK			-		Contract 121070
009	CONSOLIDATION COMPACTION EARTHWORKS	NON S	It single stage traxial. Mt. Multistage traxial xem: kemoulated itst., reconstituted v. Vane is my and cy given for load increment of 100kPa above assumed overburden pressure - Std. 2.5kg Hvy: 4.5kg V Ib: Vibratory Mould - P: Proctor C: CBR $\gamma_{\rm C}$ (max) - Water% (Optimum) < Notural> CBR - T: Top B: Base A: Average REL - Relationship Test	umed over for C: CBI	burden r Burden r R 7d	iste: reconstituted v. yane erburden pressure 388 7 _Q (max)	nship Test	sb: snedr box (resid)	(Design)	Football	Football Association	oo i		P	Form 40/4	Sheet LI/11

EX
W

왕

Æ

138

32

Comp/CBR %> 20mm=2.8 37.5mm=0 Test Remarks and Notes 121070 38%/26%/33%/38 361/371/38/11 28,1434,278,158 178/298/188/68 PSD : CL(/+)SI/SA/GR PSD : CL(/+)SI/SA/GR PSD : CL(/+)SI/SA/GR PSD : CL(/+)SI/SA/GR OTHER MCV % > 20mm = 0.0 Contract Sheet Laboratory test summary sheet Water Š Š 2 g/IIt CHEMICAL SO 3. Soll 펎 0.01 18.0 12.2 X C< 7.8 COMPACTION EARTHWORKS ~ ° 1.48 2.03 1.51 ... Mg/m 1.85 1.70 1.93 ٠. ه £ 7.8 = Water Ê 7 4 77 80 % Football Association CBR m_v c_v Type/ m²/MN m²/yr Mould Type/ BYRKLEY PARK CONSOL-IDATION Project Deg. U/C: Unconsolidated/Consolidated U/D: Undrained/Drained A with P.W.P. measurement Diameter in mm 1: Single Stage Irlaxial M: Multistage Irlaxial REM: Remoulded REC: Reconstituted V: Vane SB: Shear Box (resid) ø ø υυξ STRENGTH SHEAR ρς χ σ, σ σ, ο 8 m_{ν} and c_{ν} given for load increment of 100kPa above assumed overburden pressurestic. 2.5kg. Hvy: 4.5kg. VIb: VIbratory Mould - P; Practor C; CBR. γ_{d} (max) Water% (Optimum) <Natural> CBR - 1; Top B; Base A; Average REL - Relationship Test Type Test 7^b Mg/m³ CLASSIFICATION TESTS Nat 8 22 22 22 <u>6</u> _ <u>*</u> Ю Sieve Sieve eye eye a <u>0</u> X 82 R 425 Prep ž 8 » ° % 24 9 ĸ Ā <425 ุรั % 54 S 33 % 85% 50 34 34 For full explanation of symbols please see key sheet Reddish brown mottled grey slightly gravelly sandy Dark orangish brown mottled grey slightly gravelly Reddish brown mottled grey slightly gravelly sandy Orange and red slightly gravelly sandy CLAY Orange and red slightly gravelly sandy CLAY Reddish brown slightly gravelly sandy CLAY Reddish brown slightly gravelly sandy CLAY Description oloration Associates SAMPLE DETAILS slightly sandy CLAY CLAY CLAY CONSOLIDATION COMPACTION EARTHWORKS SHEAR STRENGTH Š Š œ ۵ മ 0 മ 0 8 0.50 - 0.60 0.60 - 0.70 0.60 - 0.701.50 ~ 1.60 1.50 - 1.60 2.40 - 2.40 2.40 - 2.40 Depth E; NOTES

11/12

22

五

72

28

Exp
W

The Depth Type Companies Type Companies Type				SAMPLE DETAILS	CLASS	FICATI	CLASSIFICATION TESTS	8	SHI	SHEAR	Ω ⊡	CONSOL- IDATION		COMPACTION EARTHWORKS	CTION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CHEMICAL		OTHER
150 - 1.40 5 Dark ormgish brown slightly gratelly storig CLAY 786 4/25 Stee REI 50 5/2 REI 50	<u> </u>		Type No.				Nat Water Mg	, Test ,m Type		O , O Å	8 2. m.2//v	c _v m²/yr	t	BR Wate	√d Mg/m³	H.	\$03 \$04) \$09 \$09 \$09		Remarks and Notes
1.50 - 1.60 8 Grangish brown slightly gravelly sandy GAM* 787 425 Sieve FRH 50 582 Hwy (3.5/2.02) 1.50	<u> </u>	0.50	+	Dark orangish brown mottled grey gravelly CLAY			21												
1.50 - 1.50 D Compish brown slightly sandy CLAY See Fact STRENS STRENS See Composition of symbols please see s	<u> </u>	1.50		Orangish brown slightly gravelly sandy CLAY	425		91	<u> </u>		562		-	Hvg.	(9.5	(2.03)			PSD : C2	L(/+)SI/SA/GR 58/258/328/178
150 - 1.60 D Grangish brown slightly gravelly GAM 1.95 1.96 1.95	-						!	5.5		197			Hvg	0 11				Comp/CBI	R X> 20mm=2.6 37.5mm=0 20mm = 0.0
1.50 - 1.60 D Crangish brown slightly gravelly sandy CLAY Sieve 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.60 D Crangish brown slightly sandy CLAY 1.50 - 1.50 D Crangish brown slightly sandy CLAY Crangish brown slightly slightly sandy CLAY Crangish brown slightly slightl						-		REM		45			Hvy Hvy	41 6.5	1.93				
1.50 - 1.50 D Crangish brain slightly gravelly sandy CLMY State 1.50 - 1.50 D Crangish brain slightly gravelly sandy gravelly sandy CLMY State		-								-	<u>.</u>			- 2					
1.50 - 1.60 D Orangish brown slightly gravelly sandy CLAY 19 S Sieve 19 S S Sieve 19 S S Sieve 19 S Sieve 19 S S Sieve 19 S S S S S S S S S								•					 Ç ç	დ 8					
1.50 - 1.50 D Orangish brown slightly gravelly sandy CLAY 1956 1957	•												ACV.	91					
2.30 - 3.00 B Grey stightly sandy GLAY 54 33 21 35 35 32 32 32 32 32 32	<u> </u>		۵	Orangish brown slightly gravelly sandy CLAY			61											,	
2.30 – 3.00 b Dark red stightly sandy grave ly CLAY Contract Contract Contract	7 84	2.90 -	<u>α</u>	Grey slightly sandy CLAY	£ £ £		X3					· ·						PSD : CL	L(/+)S1/SA/GR 48X/46X/SX/OX
For full explanation of symbols please see key sheet RSTRENGTH - u/c: unconsolidated u/D: Undrained/Dialized A with P.W.P. measurement Diameter in mm T: Single Stoger Install Missing in Install Missing Endand in 100kPa above assumed overburden pressure NSOLIDATION - my and c, given front in crement of 100kPa above assumed overburden pressure MPACTION - std: 2.5kg Hvy: 4.5kg VIb: Vibratory Mould - P: Practor C: CBR	<u> </u>	2.8		Dark red slightly sandy gravelly CLAY			32				· · ·								
AR STRENGTH - U/C: Unconsolidated Vibration of symbols please see key sheet 1. Single Stope Triangle Fritation of symbols please see key sheet 1. Single Stope Triangle Fritation of Symbols please Stope Triangle Fritation of Contract 1. Single Stope Triangle Fritation of Symbols of Stope Triangle Fritation of Contract of Symbols of Symbo	·													<u> </u>					
1: Single Stope Trickfol Mr. Mullistage Indxiol Mr.	<u> </u>	VOTES SHEAR STRE	NGTH			with P.	W.P. meas	rement	1	ter in mm		oject	PARK		-	-		Contr	
	- -	CONSOLID, COMPACT! EARTHWOR	ATION SXS	1 1	imoulded Ri ssumed overl ctor C: CBI	SC: Kec burden i ? 7d	onstituted oressure (max) EL - Relati	v: vane onship Te		ear box (re	(DISE	Footbal	l Associa	tian			Form 40,	٠	

T	7
	7
V	J)

OTHER	Test Remarks and Notes	Ccmp/C8R X> 20mm=2.8 37.5mm=4 MCV X > 20mm = 0.0 PSD : CL(/+)S1/SA/GR 42x/32x/9x/17x Ccmp/C8R X> 20mm=0 37.5mm=0	Contract 121070	Sheet LI/14
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) pH Soil Water % q/ltr			200
COMPACTION EARTHWORKS	Comp type/ CBR Water γ_{d} MCV Mould % % Mg/m	Hvy (11) (2.05) Hvy (15> 1.89 Hvy 17 1.81 Hvy 12 2.02 Hvy 11 2.05 Hvy 6.7 2.04 Hvy 6.7 2.04 Hvy 6.7 2.04 Hvy 6.7 2.04 Hvy 11 2.05 Hvy 6.7 2.04 Hvy 12 1.54 Hvy 12 1.54 Hvy 13 1.66 Std 20 1.54 Std 20 1.56	Y PARK	Football Association
CONSOL- IDATION	m _V C _V type/ m²/MN m²/yr Mould		Project BYRKLEY PARK	
STRENGTH	73 C Ø Test 7 P; C' Ø'. Type kPo kPo Deg.	REM 50 299 REM 50 94 REM 50 51	nent Diometer In mm	Valle 35. Steal pox (lesid) hip Test
CLASSIFICATION TESTS	425 Prep Not $\gamma_{\rm b}$ WL Wp Ip Water $\gamma_{\rm b}$ % Mg/m	83. 425 Sieve 60 30 30 16 79 2.3 2.27 2.3 2.27 2.3 2.37 2.37 2.37 2.37 2.37 2.37 2.37 2.37	et andre A with P.W.P. measurement	obulded ketc. Reconstituted v. varie kurned overburden pressure for C: CBR / (mox) e A: Average REL - Relationship Test
SAMPLE DETAILS	Description	Reddish brown slightly sandy gravelly CLAY Grangish brown mottled grey slightly sandy slightly Grangish brown and grey gravelly CLAY	For full explanation of symbols please see key sheet - u/c: Unconsollaated/Consoldated u/D: Undaned/Drained	 Single Stage Irlaxia: M. Multistage Irlaxia: Remoulacia, Reconstituted v. Varietry, and c. given for load increment of 100RPa above assumed overburden pressure. Stat: 2.5kg Hvy: 4.5kg Vib: Vibratory Moulacie. P. Proctor C. CBR Ya (max) Water% (Optimum) ANaturab CBR - T. Top B: Base A: Average REL - Relationship Tes
	Type No.	<u>u</u> <u>u</u> <u>o</u>	ENGTH	NATION TION RKS
	Depth R	TP10 0.40 - 0.50	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	다. 의 0 리	TP10	Ž	

S
te
Œ
\ddot{c}
ŏ
S
Assa
4
\Box
0
ij
<u>o</u>
ō
$\bar{\Xi}$
∵
ıΩ
$\overline{}$
* # 3
W

		SAMPLE DETAILS	CLASSIFICATION TESTS	STRENGTH	CONSOL- COMPA	COMPACTION CHEARTHWORKS	CHEMICAL	OTHER
한 한	Depth	Type Description No.	 Kanda Barana Anata Anat	π ₃ C Ø η P ₀ C' Ø' κΡα ΚΡα Deg.	m, c _v Type/ CBR Water m²/MN m²/yr Mould % %	Per Ya MCV PH	50 ₃ 80 ₃ (\$0 ₄) 80 ₁ 80 ₁ 80 ₁ Water %	Test Remarks and Notes
TP 10 TP 10 TP 10	0.90 - 1.00 0.90 - 1.00 3.30 - 3.40	B bark reddish purple sandy gravelly CLAY B bark reddish brown slightly gravelly sandy CLAY D bark reddish brown gravelly CLAY	84% 425 Sieve 22 22 22 22 22 22 22 23 21 22 24 23 4 17 17 13 20 20 20 20 20 20 20 20 20 20 20 20 20		Hvy (9.5) Hvy (19) Hvy (19) Hvy (19) Hvy (10) Hv	(9.5)(2.02) (19) 1.78 21 1.70 15 1.92 6.8 2.01 17 1.46 10.0 21 1.46 2.0 15 1.46 14.7 11 1.46 18.2		PSD : CL(/+)SI/SA/GR 30X/28X/31X/10X Ccnp/CBR X > 20mm=7.2 37.5mm=0 MCV X > 20mm = 0.0 MCV X > 20mm = 0.0
Z	NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS	For full explanation of symbols please see key sheet For full explanation of symbols please see key sheet Single Stage Trioxial M: Multistage Trioxial REM: Remoulded REC: Reconstituted V: Vane Stage Stage Trioxial M: Multistage Trioxial REM: Remoulded REC: Reconstituted V: Vane Stage of North Stage Vibration of 100kPa above assumed overburden pressure Stage 1.5kg Hvy. 4.5kg Vibr. Vibration Mould - P: Proctor C: CBR	heet 4/Drained A with P.W.P. measuren iemouided REC: Reconstituted V: V assumed overburden pressure octor C: CBR 7 _d (max) sase A: Average REL - Relations	nent Dlameter in mm Vane SB: Shear Box (resid) nip Test	Project BYRKLEY PARK Football Association		Form 40/4	Contract 121070 Sheet Lt/15

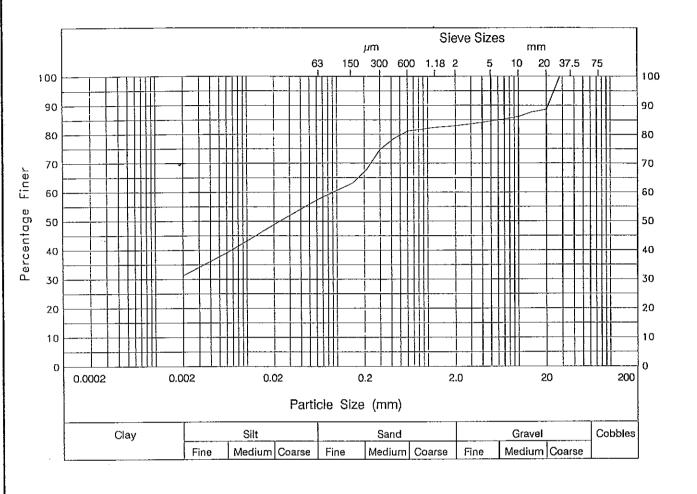
8
#
<u>.a</u>
ŏ
ű
Asso(
⋖
.0
at
7
_0
Ω.
X.
Y
W
_

			SAMPLE DETAILS	CF	SSIFIC	CLASSIFICATION TESTS	TESTS		SHEAR	પ્ર IGTH	0 9	CONSOL- IDATION		COMPACTION EARTHWORKS	CTION		몽	CHEMICAL	OTHER	
1 0 0	Depth 3	7. No.	Description	425 WL %	Prep W %	oi Water %	Nat 7 _b	Test Type	д с кРа кра	O O O	Ø	Z	Comp Cv Type/ m ² /yr Mould	CBR Water	er 7d Mg/m³	WC WC	S Hd	SO ₃ SO ₃ (SO ₄) Soll Water % 9/ltr	er Test Remarks and Nates	ates
	0.40 - 0.50	8 0 0	Orangish brown mottled grey sandy gravelly CLAY Orangish brown mottled grey sandy gravelly CLAY Reddish brown slightly gravelly sandy CLAY	33 45	22 Sieve 77	2	1.91 4.2.05 4.2.05 4.2.05 7.05 7.05	REM REM REM	2 2 2	7. 55. 53. 5.3.	·		HVY HVY HVY HVY HVY HVY HVY HVY HVY HVY	(12) (17) (13) 9.8 9.8 7.9 14 15 11 11 12 12	(2.00) (2.00) (1.77 (1.78) (1.46) (1.49) (1.49) (1.99) (1.99) (1.98) (1.98) (1.98) (1.98) (1.98)	11.2 9.0 18.2 18.0			Conp/CBR %> 20mm=2.4 37.5mm=0 HCV % > 20mm = 0.0 PSD : CL(/+)S1/SA/GR 18%/13%/26%/43% Conp/CBR %> 20mm=2.9 37.5mm=0	37 .5mm=0
O _N	NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS	ANGTH NON KS	For full explanation of symbols please see key sheet - u/C: Unconsolidated/Consolidated U/D: Undrained/Dialned A with P.W.P. mec T: Single Stage Triaxial M: Multistage Triaxial REM: Remoulded REC: Reconstitute - m _y and c _y given for load increment of 100kPa above assumed overburden pressure - stat. 2.5kg Hvy: 4.5kg Vib: Vibratory Mould-P: Practor C: CBR 7 _d (max) Water% (Optimum) < Natural> CBR - T: Top B: Base A: Average REL - Reit	/Drained smoulded issumed o	A wit REC: 1 verburd CBR verage	n P.W.P. Reconstl en press 7 d (m REL -	A with P.W.P. measurement EREC: Reconstituted V: Vane Serburden pressure JBR 7 _d (max) erage REL - Relationship Test		Diameter in mm SB: Shear Box (r	Diameter in mm SB: Shear Box (resid)		Project BYRKLE Footba	Ject BYRKLEY PARK Football Asso	ject BYRKLEY PARK Football Association			-	, Form 40/4	Contract 121070 Sheet L1/16	0

7	<u>}</u>
Q	

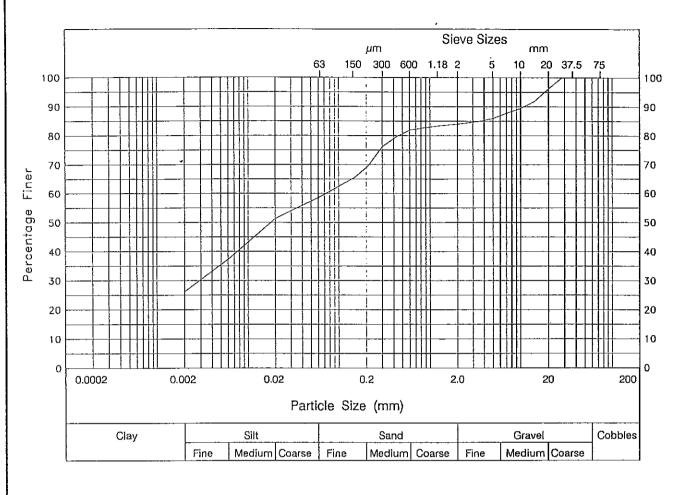
			SAMPLE DETAILS	CLAS	SIFICA	CLASSIFICATION TESTS	rests		SHEAR		CONSOL- IDATION		COME	COMPACTION EARTHWORKS	zσ	E E	CHEMICAL	OTHER
FO e	Depth E	Z Z	lype Description	<425 Pr W _L W	a w w d	Nat Water		Type	α α 3 κ Ρ ο ο ο κ κ Ρ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	8 8 8 0	my cv Type/ T²/MN m²yr Mould	Comp Type/ r Mould	CBR %	water 7a3 % Mg/m3	λω WC,	<u>₽</u>	SO ₃ SO ₃ (SO ₄) (SO ₄) Soll Water %	Test Remarks and Notes
TP12	1.40 - 1.80	<u> </u>	Orange and grey slightly sandy very gravelly CLAY	31% 425	27 Sieve 27 31	2 <u>7</u>						Hvy Hvy Hvy Hvy			(%2.1 1.80 1.70 1.81			PSD : CL(/+)S1/SA/GR 14%/10%/20%/56% Ccmp/CBR %> 20mm=24.637.5mm=6 HCV % > 20mm = 0.0
											v	Hvg MCV MCV		6.7 1.85 (19 4.18 (19	1.95 1.46 1.48 1.48 5.8			
TP12	1.80 - 1.90		Light orangish grey clayey sandy GRAVEL									Ş						
TP12	1.80 - 2.00	<u>8</u>	Light orangish grey clayey sandy GRAVEL	33% 425 49 29	25 Sieve	- 24											·	PSD : CL(/+)S1/SA/GR 14X/15X/11X/60X
TP 12	3.00 - 3.10		Reddish brown slightly gravelly sandy CLAY			- 8					: : -							
TP12	3.00 - 3.10		Reddish brown slightiy gravelly sandy CLAY	83% 42S 46 2]	21 Si eve D3 Si eve	e <u>2</u>	.											PSD : CL(/+)SI/SA/6R 30x/33x/26x/11K
TP13	0.30 ~ 0.50		Grange and grey slightly sandy slightly gravelly CLAY	46 23	23 Sieve	e 24												PSD : CL(/+)S1/S4/GR 20x/6 1x/15x/4x
TP13	0.30 - 0.50	0	Orangish grey gravelly CLAY			21								· · · · · · · · · · · · · · · · · · ·			-	
Z	NOTES SHEAR STRENGTH	ENG SATIO		neet /Drained smoulded	A with REC: R	P.W.P. I econstift n pressu	A with P.W.P. measurement REC: Reconstituted V: Vane erburden pressure		Plameter in mm SB: Shear Box (resid)	m (resid)	Project 8YRKLE Footba	Jject BYRKLEY PARK Football Association	ciation					Contract 121070 Sheet
	COMPACTION	TION NSKS		octor C: -	CBR eroge	Yd (m REL	(max) - Relationship Test	ship Test									Form 40/4	

			SAMPLE DETAILS	CLASSIFICATION TESTS	.ATION	I TESTS	SI	SHEAR	CONSOL-		COMPACTION	TION	CHEMICAL	;AL	OTHER
A e e	Depth m	Type No.	Description	<425 Prep WL Wp 1	<u>ā</u>	Nat Yb water Yb % Mg/m	Test	O O O	Ø Comp Ø' m _V C _V Type/ Deg. m ² /MN m ² /Yr Mould	ľ	CBR Water %	γ _d MCV	(\$O ₄) / pH Soil	503 (504) Water g/Itr	Test Remarks and Nofes
TP13 1.40	0 - 1.50	Δ.	Orangish grey slightly gravelly sandy CLAY	39 % 125 Sie	Sleve 19 15 24 24 5 35	8.5.5 8.5.6.5 8.0.5.4.6.0	REM 50 REM 50 REM 50	153 106 106 107 107		Std Std Std Std Std GCV	(+ C)	(1.91) 1.73 1.85 1.88 1.80 1.80		ı o x	PSD : CL(/+)S1/SA/6R 27K/35K/28K/10K Comp/CBR K> 20mm=2.6 37.5mn=0 MCV K > 20mm = 0.0
TP13 1.4	1.40 - 1.70	Q	Orangish grey slightly gravelly sandy CLAY		. .						<u>.</u>				
TP13 2.60	0 - 2.80	æ	Dark purplish brown mottled grey slightly gravelly sandy CLAY	80% 425 Sie 34 19 1	Sieve 15									ě.	PSD : CL(/+)S1/SA/GR 21x/37x/27x/16x
TP13 2.60	0 - 2.70	۵	Dark purplish brown mottled grey slightly gravelly sandy CLAY							····-					,
P 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.1 - 8.0	α	Derk reddish brown mottled grey slightly sandy gravelly CLAY	83% (AZ Sie 52 17 3	Sieve Sir Si	15 262 17 2,07 19 21,07 19 21,15	REM 50 RE	197		Std Std Std Std Std	(a) 11 21 31 81 91	(1.80) 1.67 1.72 1.79 1.76	_	ă G	PSD : CL(/+)SI/SA/GR 26x/35x/27x/11x Comp/CBR x> 20mm=0 37.5mm=0
NOTES SHE SCOOOL	STES SHEAR STRENGTH CONSOLIDATION COMPACTION	AF OF S	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undrolned/Drained A with P.W.P. mes T: Single Stage Triaxial M: Multistage Triaxial REM: Remoulded REC: Reconstitute - m _V and c _V given for local increment of 100kPa above assumed overburden pressure - stat: 2.5kg Hyv.; 4.5kg Vib. Vibratory Mould - P: Proctor C: CBR Y _G (max)	eef 'Drained A w. smunded REC: stumed overburk	Ith P.W.P Reconst	A with P.W.P. measurement REC: Reconstituted V: Vane erburden pressure		Dlameter in mm SB: Shear Box (resid)	Pro)ject BYRKLEY PARK Football Association	at ion			0 10	Contract I21070 Sheet LIVIB
Ĕ	RTHWOR		1	B. Bose A. Average	퍒	- Relationship Test	ship Test						Fori	Form 40/4	;

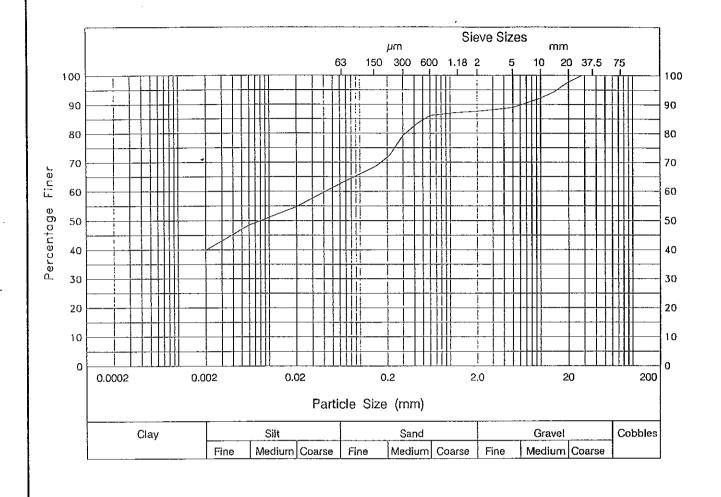

EX	
W	

6

)						-
		SAMPLE DETAILS	CLASSIFICATION TESTS	SHEAR STRENGTH	CONSOL- COMPACTION EARTHWORKS	CHEMICAL	OTHER
<u> </u>	Depth B	Type Description	425 Prep Nat Y Nate Y P Nate Y P Nate Y P Nate Nate N P Nate N Nate N N N N N N N N N N N N N N N N N N N	Type kPa kPa Deg.	m, c, Comp CBR Water Yd M m²/MN m²yr Mould % % Mg/m	SO ₃ SO ₃ (SO ₄) MCV pH Soll Water % 9/ltr	Test Remarks and Notes
1 P 1 4	4.00 - 4.20	B Dark reddish brown slightly sandy gravelly CLAY			Hvy (8.5)(2.13) Hvy (12> 2.03 Hvy 14 1.93 Hvu 16 1.87		Comp/CBR %> ZDmm=6.3 37.5mm=8 MCV % > ZDmm = 0.0
					9.7 2.10 6.0 2.09 12 1.47 15 1.46	11.2	
					16 1.48 8.6 1.47	5.2	
TPIS	1.00 - 1.00	B Dark orange and reddish brown sandy gravelly CLAY	4Y 59% 425 Sieve 47 24 23 18		(12) (PSD : CL(/+)S1/SA/GR 18x/20x/27x/35x
					21 15 9.8		Ccmp/CBR %> 20mm=7,3 37,5mm=2 MCV % > 20mm = 0.0
					HVY 8.0 1.96 HCV 18 1.44 HCV 20 1.45 HCV 13 1.52	12.0 8.7 14.8 18.0	
TP IS		D bark grange and reddish brown sandy gravelly CLAY	AY				
TPIS	3.80 - 3.90	D Reddish brown slightly sandy gravelly CLAY	<u>5</u>				
Įž	NOTES SHEAR STRENGTH	,	see key sheet Undrahed/Drained A with P.W.P. measurement Undrained/Drained PEC: Reconstituted V:Vane	ment Diameter in mm Vane SB: Shear Box (resid)	Project BYRKLEY PARK		Contract 121070
	CONSOLIDATION COMPACTION EARTHWORKS	1 1	sove assumed overburden pressure P: Practor C: CBR $^{\gamma}$ (max) B: Base A: Average REL - Relationship Test		Football Association	Form 40/4	Sheet Li/19

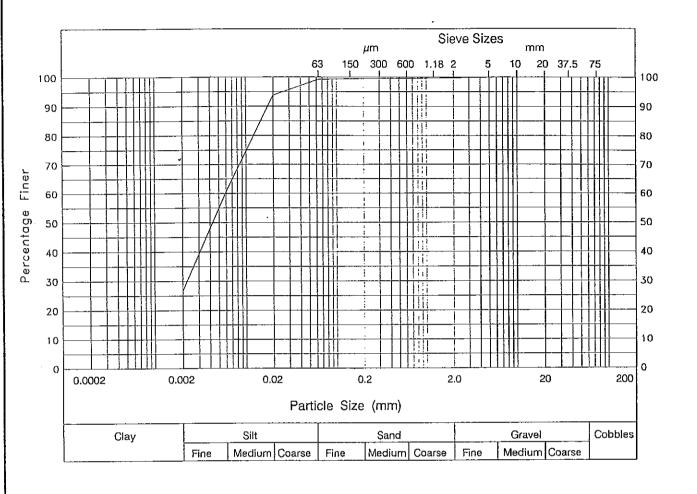

•	Associates	
;	Exploration	
	Ī	

			•										
		SA	SAMPLE DETAILS	CLASSIFICATION TESTS	ICATION	V TESTS	SHEAR STRENGTH	CONSOL- IDATION	CON	COMPACTION EARTHWORKS	CHE	CHEMICAL	OTHER
Hole Depth		Type No.	Description	425 Prep W _L W _P % %	<u>a</u>	Nat 7 Test % Mg/m Type	Test on poor Type KPa KPa	 α. α. α. γ.	CBR %	Water 7 _{d MCV} % Mg/m	五	SO ₃ SO ₃ (SO ₄) Soll Woter % g/ltr	Test Remarks and Notes
TP15 3.80 -	3.8	B Redd	Reddish brown sandy gravelly CLAY	80% 425 S 43 19	Sieve 24 18								PSD : CL(/+)SI/SA/GR 27%/28%/24%/21%
. TP16 2.10 - 2.23		8	Dork red slightly sandy gravelly CLAY						HVU HVU HVU HVU HVU HVU HVU HVU HVU HVU	(9.5)(2.10) (16) 1.87 17 1.79 11 2.05 10 2.09 7.2 2.07 14 1.45 1 16 1.53 5 10 1.46 1 9.3 1.48 1	10.2 5.4 14.0 18.2		Comp/CBR %> 2Dmm=2.6 3/.5bm=UMCV %> 2Dmm = 0.0
NOTES SHEAF	TES SHEAR STRENGTH	GTH .	For full explanation of symbols please see key sheet U/C: Unconsollated/Consollated U/D: Undrained/Drained Y. Grans stood Flower M: Multitage Tricked DEM: Demoirled	eet Droined A	with P.W.P	A with P.W.P, measurement PEC: Reconstituted V: Youe	nent Diameter in mm Vane SB: Shear Box (resid)	Project BYRKLEY PARK	PARK				Contract
CON. EARTH	CONSOLIDATION COMPACTION EARTHWORKS	Z OZ S	This ingle study in the manager makes with the stranger and the study ond cyglyen for load increment of 100kPa above assumed overburden pressure stat: 2.5kg Hvy: 4.5kg VID: VID: VID: VID: Mould - P: Practor C: CBR $^{\prime}$ (max) water% (Optimum) < Naturals CBR - T: Top B: Base A: Average REL - Relationship Test	isumed overb ctor C: CBR se A: Avera	urden pre:	ssure max) - Relations	hip Test	Football	Football Association	_		Form 40/4	Sheet LI/20


Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 µm	68
20 mm	89	150 μm	63
14 mm	88	63 µm	58
10 mm	86	20 μm	49
6.3 mm	85	6 μm	39
5 mm	85	2 μm	31
3.35 mm	84		1
2 mm	83	Ì	1
1.18 mm	82		1
600 μm	81		
425 μm	78	ļ	
300 μm	75		
Hole	Description		
TP1	Orangish grey	sandy gravellY C	LAY
Depth			
1.20 -1.30			
Туре			
В	·		
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			

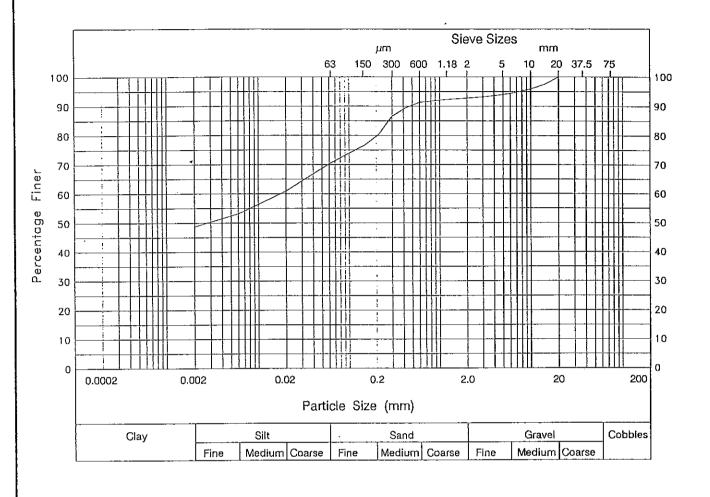
		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/1

Particle Size	% Passing	Particle Size	% Passing
Particle Size	/o rassing	Farticle Size	/a Fassing
28 mm	100	212 µm	70
20 mm	96	150 μm	66
14 mm	92	63 µm	59
10 mm	89	20 μm	51
6.3 mm	87	6 µт	37
5 mm	86	2 μm	26
3.35 mm	85		
2 mm	84		
1.18 mm	83		
600 μm	82		
425 μm	80		
300 μm	76		
Hole	Description		
TP1	Reddish brown s	sandy gravelly CL/	ΑY
Depth			
3.20 -3.30			
Туре			
В	l		
Test Performed	Uniformity Co	pefficient not app	olicable.
Wet			

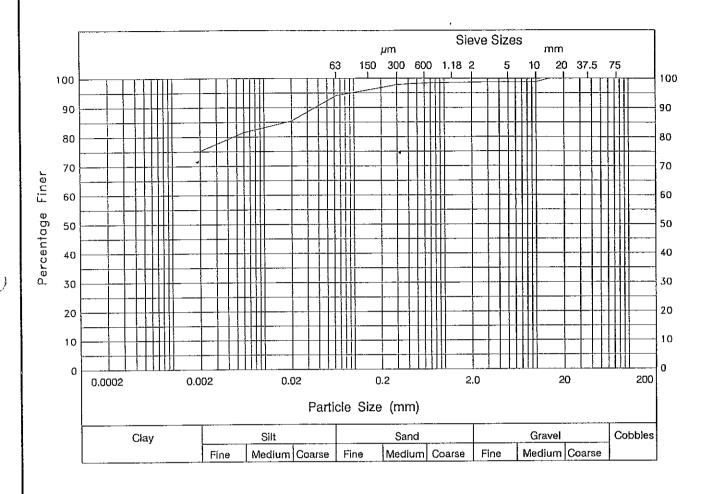

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/2

Particle Size	O/ Deceine	Particle Size	9/ Bossins
Particle Size	% Passing	rai licie Size	% Passing
28 mm	100	212 μm	72
20 mm	98	150 µm	69
14 mm	94	63 μm	63
10 mm	92	20 μm	55
6.3 mm	90	6 μm	48
5 mm	89	2 µm	40
3.35 mm	88		
2 mm	88		ļ
1.18 mm	87		
600 μm	86		
425 μm	83		
300 μm	79		
Hole	Description	\ <u>-</u>	,
TP2A	Orange, red and	d grey slightly g	ravelly sandy
Depth	CLAY		
0.80 -0.80			
Туре			
В			
Test Performed	Uniformity Co	pefficient not ap	plicable.
Wet		·	

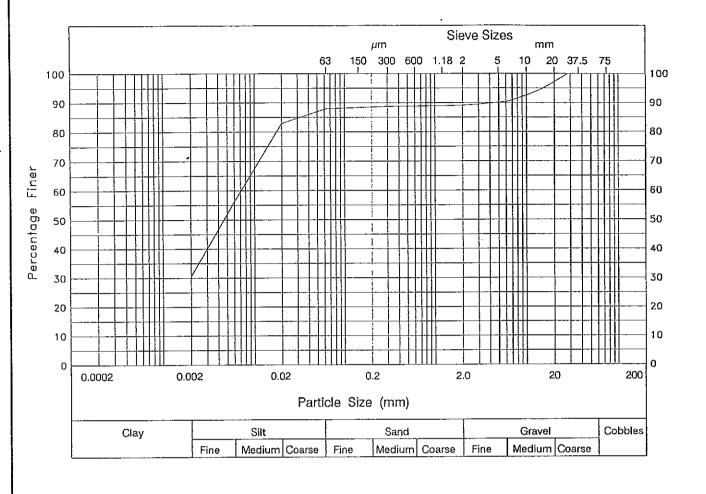
لا الصف


		Form 25/ <u>4</u>
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/3

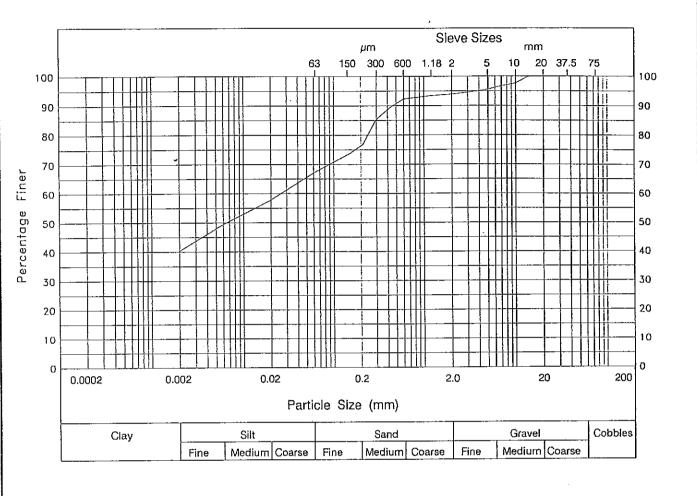
Particle Size	% Passing	Particle Size	% Passing
6.3 mm	100	6 μm	61
5 mm	100	2 μm	27
3.35 mm	100	}	
2 mm	100	-	
1.18 mm	100		
mu, 003	100		
425 μm	100]
300 μm	100		
212 μm	99		
150 μm	99		
63 μm	99		
20 μm	94		
Hole	Description		
TP2A	Greyish blue s	lightly sandy CLA	Y
Depth			
1.90 -2.50			
Туре			
В			
Test Performed	Uniformity C	oefficient not ap	plicable.
Wet		·	



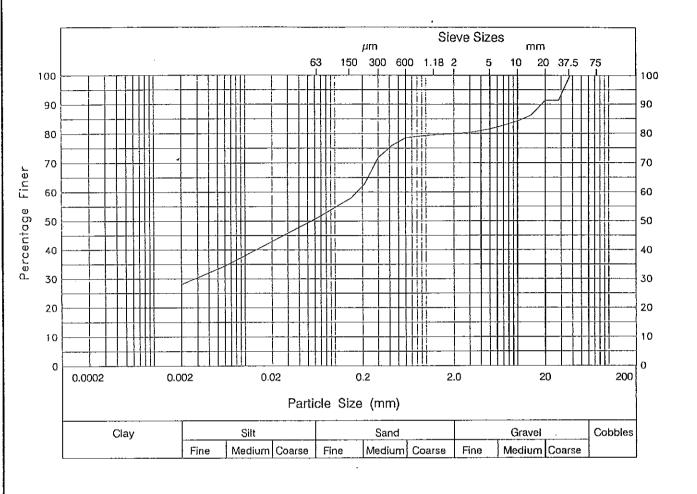
			Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract	121070
Exploration Associates	Football Association	Sheet	L2/4


Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	77
14 mm	97	63 μm	71
10 mm	96	20 µп	61
6.3 mm	94	6 µm	53
5 mm	94	2 μm	49
3.35 mm	93		
2 mm	93	ŀ	
1.18 mm	92	1	
600 μm	91	İ	
425 μm	90		
300 μm	87		
212 μm	80		
Hole	Description	•	
TP4	Orange mottle	d yellow slightly	gravelly sandy
Depth	CLAY		
0.30 -0.40			
Туре			
В			
Test Performed	Uniformity	Uniformity Coefficient not applicable.	
Wet			

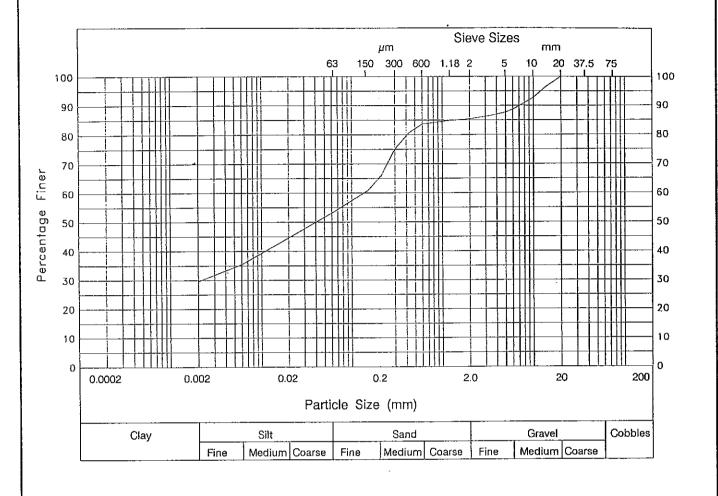
		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/5


Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	94
10 mm	99	20 μm	85
6.3 mm	99	6 μm	82
5 mm	99	2 μm	75
3.35 mm	99		
2 mm	99		
1.18 mm	99	1	
600 µm	98		
425 μm	98		
30 0 μm	98	[İ
212 µm	97		
150 μm	96		
Hole	Description		
TP4	Orangish grey :	slightly sandy s	lightly
Depth	gravelly CLAY		
0.70 -0.80			
Type			
8			
Test Performed	Uniformity Coefficient not applicable.		applicable.
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/6

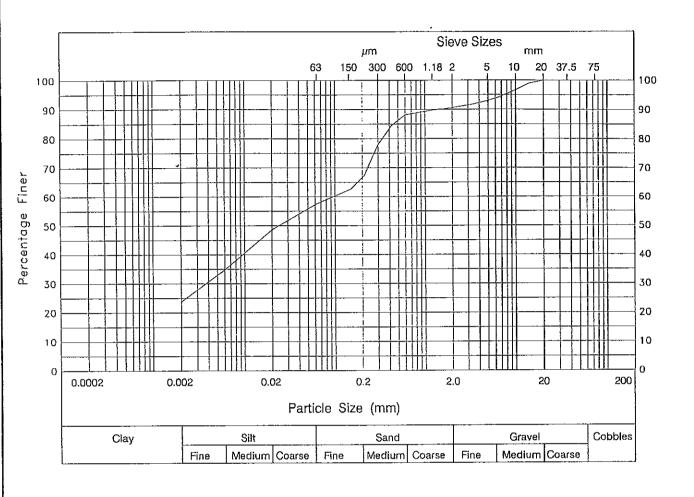

Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 μm	89
20 mm	97	150 µm	88
14 mm	94	63 μm	88
10 mm	93	20 μm	83
6.3 mm	90	6 μm	56
5 mm	90	2 μm	30
3.35 mm	90		
2 mm	89		
1.18 mm	89		1
600 µm	89		
425 μm	89		
300 μm	89		
Hole	Description		
TP4	Bluish grey sl	ightly sandy gra	velly CLAY
Depth			
1.50 -1.60			
Туре			:
8			
Test Performed	Uniformity C	Uniformity Coefficient not applicable.	
Wet			

		Form 25/4
Laboratory - Particle Size Plot	Project . BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/7

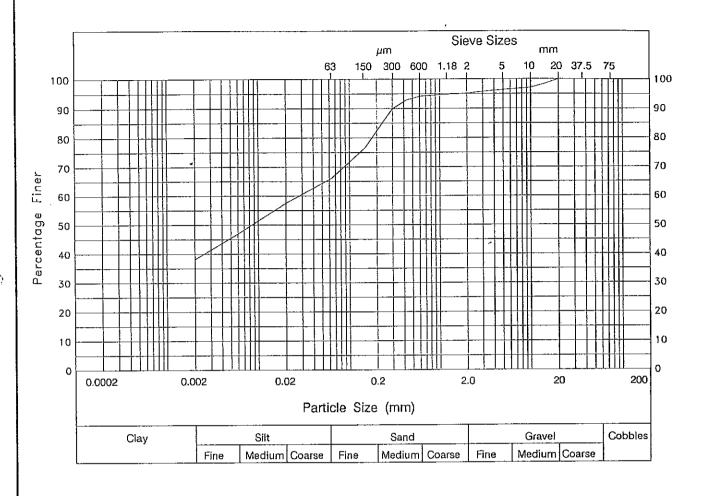

Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	67
10 mm	98	20 μm	58
6.3 mm	96	6 µm	49
5 mm	96	2 µm	40
3.35 mm	95		
2 mm	94	1	
1.18 mm	93		
600 μm	92		
425 μm	89		
300 μm	85		
212 μm	77		
150 µm	74		
Hole	Description		
TP5	Orange slight	ly gravelly sandy	CLAY
Depth			
0.30 -0.40			
Туре			
<u>B</u>		~ · · · · · · · · · · · · · · · · · · ·	
Test Performed	Uniformity	Coefficient not a	pplicable.

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/8

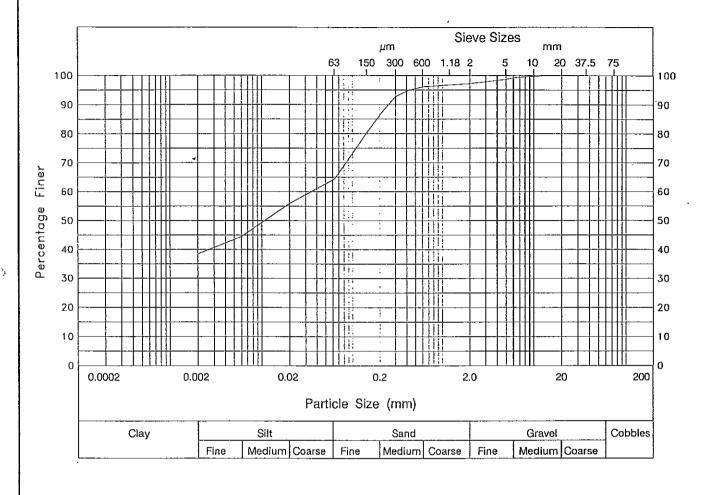
Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 дт	72
28 mm	91	212 μm	63
20 mm	91	150 µm	58
14 mm	86	63 μm	51
10 mm	84	20 µm	43
6.3 mm	82	6 μm	34
5 mm	82	2 μm	28
3.35 mm	81		•
2 mm	80		
1.18 mm	80	i	j ·
600 μm	79		
425 μm	76		
Hole	Description		
TP5	」 Dark orangish	brown and reddis	h brown mottled
Depth	grey sandy gra	avelly CLAY	
0.70 -0.80			
Туре			
В	<u>_</u> _		
Test Performed	Uniformity	Uniformity Coefficient not applicable.	
Wet	<u> </u>		


		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/9

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	61
14 mm	97	63 µm	54
10 mm	93	20 µm	45
6.3 mm	89	6 μm	35
5 mm	88	2 μm	30
3.35 mm	86		
2 mm	85		1
1.18 mm	85		
600 μm	84		
425 µm	81		
300 μm	75	}	
212 μm	66	ļ	ļ
Hole	Description		
TP5	Dark reddish	brown and grey mo	ottled slightly
Depth	gravelly sand	y CLAY	
1.70 -1.80		-	
Туре			
В			
Test Performed	Uniformity	Coefficient not a	applicable.
Wet			


			Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract	121070
Exploration Associates	Football Association	Sheet	L 2/10

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 дп	63
14 mm	99	63 μm	58
. 10 mm	97	20 μm	49
6.3 mm	94	6 μm	35
5 mm	93	2 μm	24
3.35 mm	92	1	
2 mm	91		
1.18 mm	90		
600 μm	88		
425 μm	85		
300 μm	78		
212 μm	67		
Hole	Description		
<u>TP5</u>	Slightly grave	lly sandy CLAY	
Depth			
3.60 -3.80			
Туре			
В			
Test Performed	Uniformity C	oefficient not a	oplicable.
Wet			

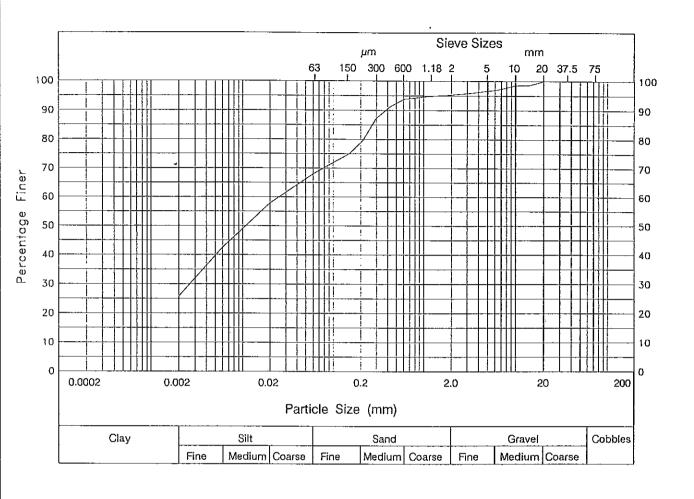

			Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract	121070
Exploration Associates	Football Association	Sheet	L2/11

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	77
14 mm	98	63 μm	66
10 mm	97	20 μm	57
6.3 mm	97	6 μm	47
5 mm	96	2 µm	38
3.35 man	96		
2 mm	95		
1.18 mm	95		E-
600 μm	94		
425 μm	93		
300 μm	90		
212 μm	83		
Hole	Description		
TP6	Orange and yel	low mottled slig	htly gravelly
Depth	sandy CLAY		
0.30 -0.30			
Туре]		
8			
Test Performed	Uniformity C	oefficient not a	pplicable.
Wet		 	

		Form 25/4
Laboratory ~ Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/12

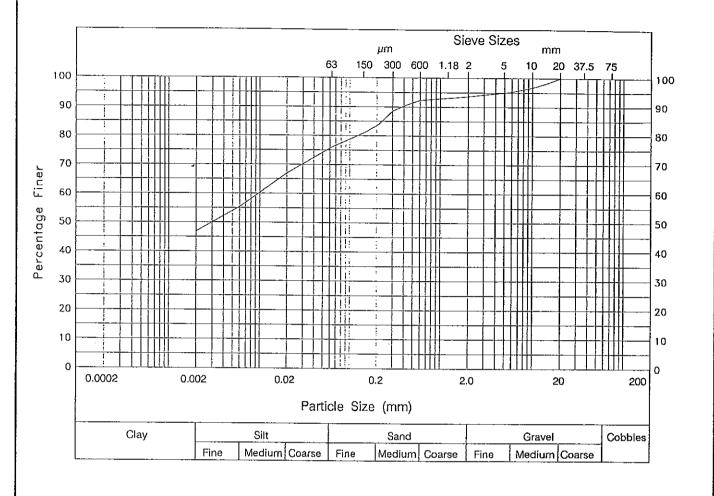
Particle Size	% Passing	Particle Size	% Passing
14 mm	100	63 μm	64
10 mm	100	20 μm	56
6.3 mm	99	6 μm	44
5 mm	99	2 μm	38
3.35 mm	98	ĺ	
2 mm	97	•	
1.18 mm	97		
600 μm	96		
425 μm	95	-	
300 μm	93		
212 μm	87]	
150 μm	81		
Hole	Description	,	
TP6	Orange and rec	slightly gravel	ly sandy CLAY
Depth			
0.60 -0.70			
Туре			
8			
Test Performed	Uniformity C	coefficient not a	oplicable.
Wet	<u> </u>	· · · · · · · · · · · · · · · · · · ·	

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/13



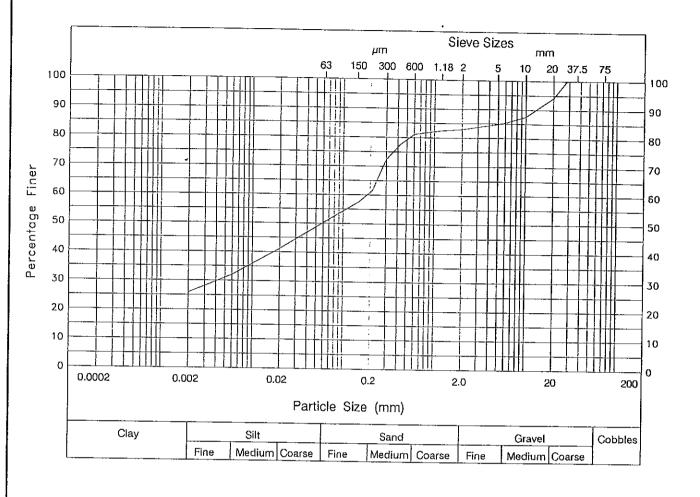
Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 μm	74
20 mm	96	150 μm	70
14 mm	95	63 μm	63
10 mm	92	20 μm	55
6.3 mm	91	6 μm	45
5 mm	90	2 μm	36
3.35 mm	90		
2 mm	89		
1.18 mm	89		
600 μm	88		
425 μm	85		
300 μm	82		
Hole	Description	•	
TP6	Reddish brown	mottled grey sli	ghtly gravelly
Depth	sandy CLAY	- •	
1.50 -1.60			
Туре	1		
В			
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			

Laboratory - Particle Size Plot

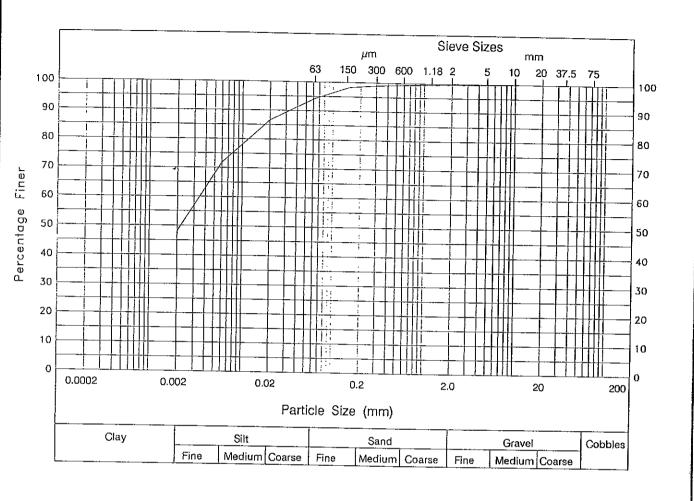

Project
BYRKLEY PARK
Football Association

Sheet
L2/14

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 дт	75
14 mm	99	63 μm	68
10 mm	99	20 μm	58
6.3 mm	97	6 μm	43
5 mm	97	2 μm	26
3.35 mm	96		
2 mm	95		
1.18 mm	95	•	
600 μm	94		
425 μm	91	·	
300 μm	87		
212 µm	80		
Hole	Description		
TP6	Reddish brown	slightly gravell	y sandy CLAY
Depth			
2.40 -2.40			
Туре			
В			
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			

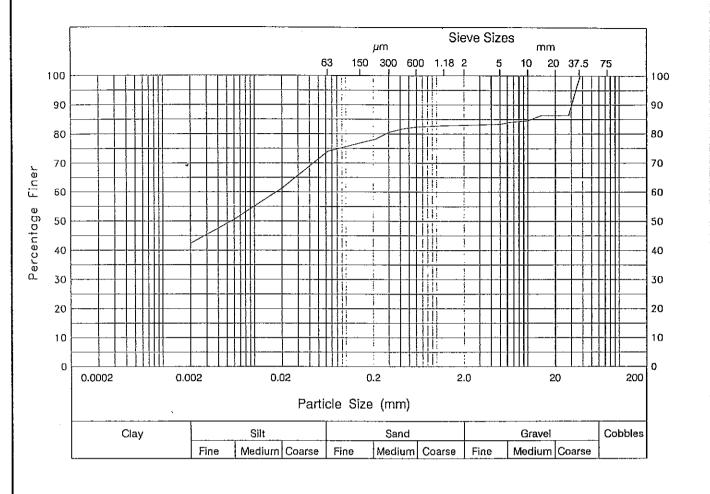

		Form 25/4
Laboratory ~ Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/15

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	81
14 mm	98	63 μm	76
10 mm	97	20 μm	67
6.3 mm	95	6 µп	55
5 mm	95	2 μm	47
3.35 mm	94		
2 mm	94		
1.18 mm	93		
600 μm	92		
425 μm	91		
300 μm	89		}
212 μm	84		
Hole	Description		
ТР8	Dark orangish	brown mottled gre	ev slightly
Depth		htly sandy CLAY	,,
0.50 -0.60	1		
Туре	1		
B	_[
Test Performed	Uniformity	Coefficient not ap	oplicable.
Wet		·	•

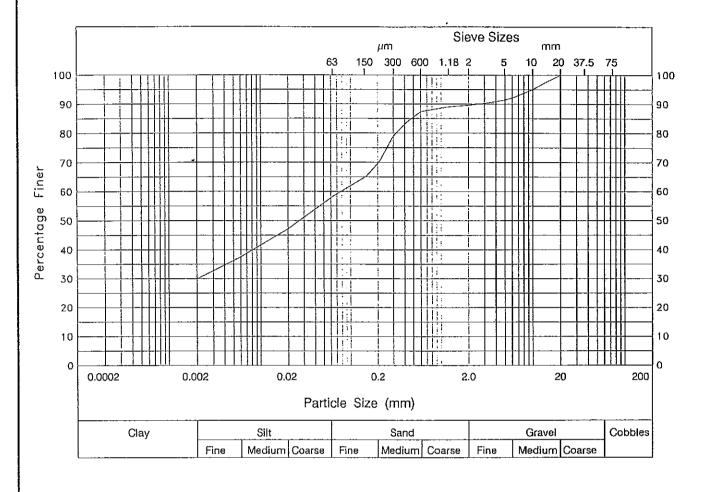

z

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/16

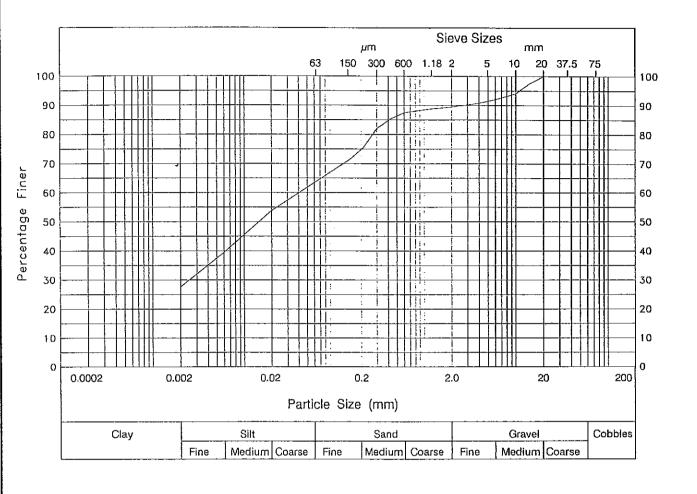
Particle Size	% Passing	Particle Size	% Passing
28 mm	100	212 дт	62
20 mm	94	150 μm	58
14 mm	91	63 μm	51
10 mm	88	20 μm	41
6.3 mm	86	6 μm	32
5 mm	85	2 μm	26
3.35 mm	84		
2 mm	83		
1.18 mm	82		
600 μm	81	į	
425 μm	78		
300 μm	72		
Hole	Description	l	
TP8	•	n slightly gravell	v candu CLAV
Depth]	, evigately gravett	y sandy CEAT
1.50 -1.60			
Туре			
B	Ì		
Test Performed	Uniformity	Coefficient not ap	nlicable
Wet		section for at	pricable.


Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract	Form 25/4 121070
Exploration Associates	Football Association	Sheet	L2/17

Particle Size	% Passing	Particle Size	% Passing
10 mm	100	20 μm	87
6.3 mm	100	6 μm	72
5 mm	100	2 μm	48
3.35 mm	100		
2 mm	100		J
1.18 mm	100		
600 μm	99		
425 μm	99		
300 µm	99		
212 µm	99		
150 μm	98		
63 μm	94		İ
Hole	Description		
<u>TP8</u>	Grey slightly	sandy CLAY	
Depth	7		
2.90 -3.00			
Туре			
В			İ
Test Performed	Uniformity (coefficient not ap	nl icable
Wet		to tolle flot ap	pricante.

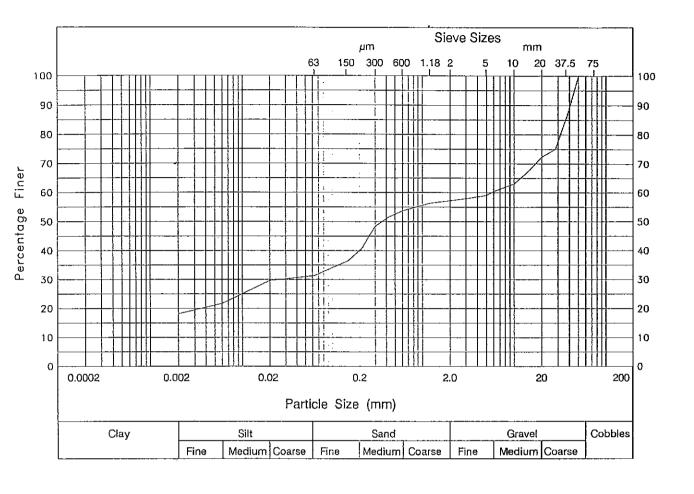

Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/18

		r .	
Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	81
28 mm	86	212 μm	78
20 mm	86	150 μm	77
14 mm	86	63 μm	74
10 mm	85	20 μm	61
6.3 mm	84	6 μm	51
5 mm	83	2 μm	42
3.35 mm	83		}
2 mm	83		
1.18 mm	83		
600 µm	82		
425 μm	82		
Hole	Description		
TP10	Orangish brown	mottled grey sl	ightly sandy
Depth	slightly grave	lly CLAY	
0.40 -0.50			
Туре			
В			
Test Performed	Uniformity Co	efficient not a	pplicable.
Wet	<u> </u>		

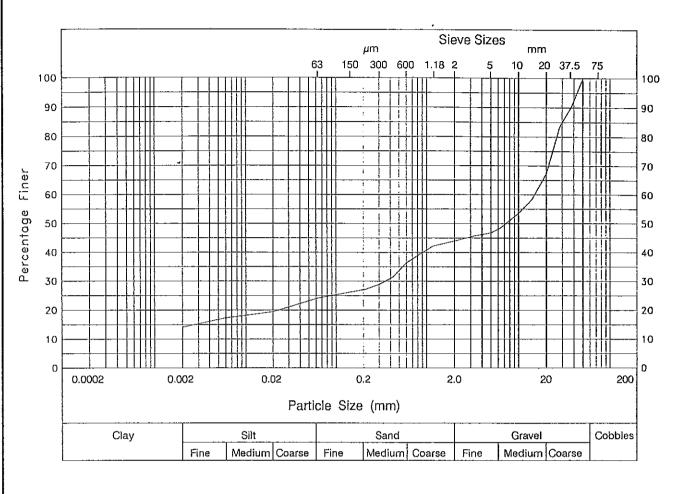

AB

			Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract	121070
Exploration Associates	Football Association	Sheet	L2/19

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	65
14 mm	98	63 μm	58
10 mm	95	20 µm	47
6.3 mm	92	6 μm	38
5 mm	91	2 μm	30
3.35 mm	90		
2 mm	90		
1.18 mm	89		
600 μm	87		
425 μm	84		
300 μm	79		
212 μm	71		
Hole	Description		
TP10	Dark reddish	purple sandy grav	relly CLAY
Depth			
0.90 -1.00]		
Туре			
В			
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			

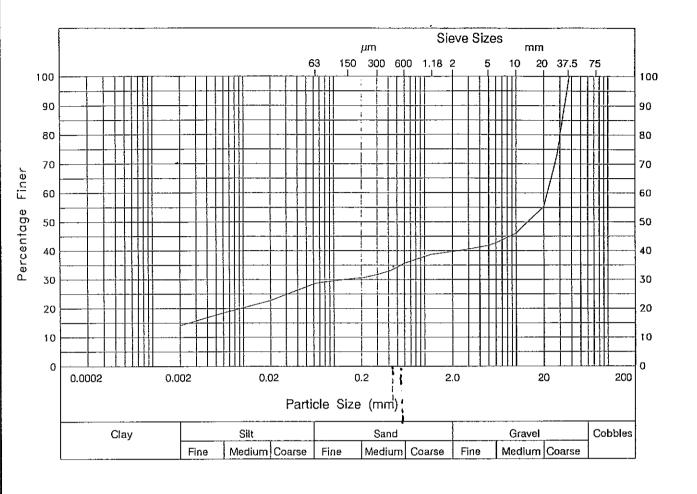

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/20

r	r		F
Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 дm	71
14 mm	97	63 μm	64
10 mm	94	20 μm	54
6.3 mm	92	6 µm	40
5 mm	91	2 μm	28
3.35 mm	90		
2 mm	89		
1.18 mm	89		
600 μm	88		
425 μm	85		
300 μm	82		
212 μm	75		
Hole	Description		
ТР10	Dark reddish b	rown slightly gra	velly sandy
Depth	CLAY		
3.30 -3.40			
Туре			
В			
Test Performed	Uniformity Co	pefficient not ap	olicable.
Wet			

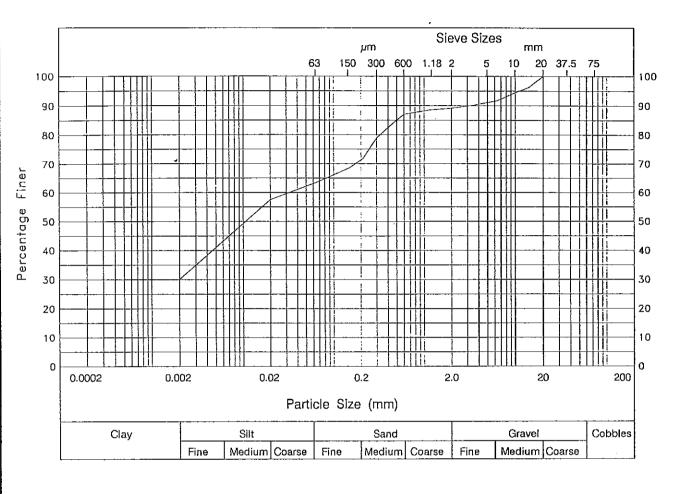


		Form 25/	/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070	
Exploration Associates	Football Association	Sheet L2/21	

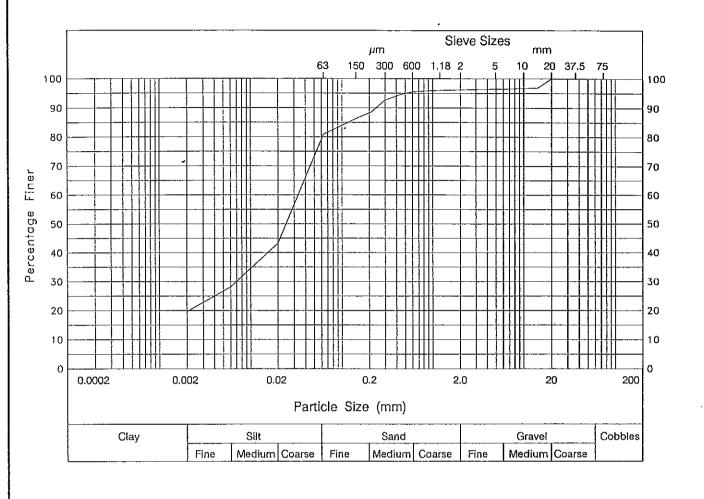
Particle Size	% Passing	Particle Size	% Passing
50 mm	100	425 μm	52
37.5 mm	86	300 μm	48
28 mm	75	212 µm	41
20 mm	72	150 μm	37
14 mm	67	63 μm	31
10 mm	63	20 μm	30
6.3 mm	61	6 µт	22
5 mm	59	2 μm	18
3.35 mm	58		
2 mm	57		
1.18 mm	56		
600 μm	54		
Hole	Description		
TP12	Orangish brow	n mottled grey sa	ndy gravelly
Depth	CLAY		
0.40 -0.50			
Туре			
В			
Test Performed	Uniformity	Coefficient not a	pplicable.
Wet			


		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/22

Particle Size	% Passing	Particle Size	% Passing	
50 mm	100	425 μm	31	
37.5 mm	90	300 μm	29	
28 mm	83	212 μm	27	
20 mm	67	150 μm	26	
14 mm	58	63 μm	24	
10 mm	53	20 μm	19	
6.3 mm	48	6 μm	17	
5 mm	47	2 μm	14	
3.35 mm	46			
2 mm	44			
1.18 mm	42	-		
600 μm	36			
Hole	Description	,	<u> </u>	
TP12	Orange and gr	ey slightly sandy	very gravelly	
Depth	CLAY			
1.40 -1.80				
Туре				
В				
Test Performed	Uniformity	Uniformity Coefficient not applicable.		
Wet				

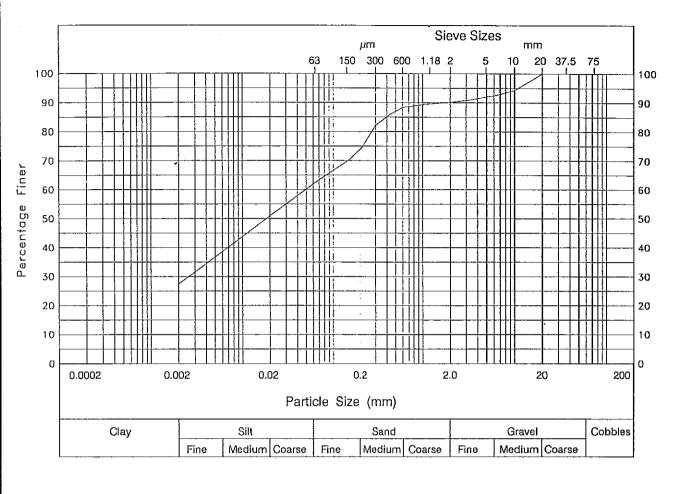

AD

			Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract	121070
Exploration Associates	Football Association	Sheet	L2/23

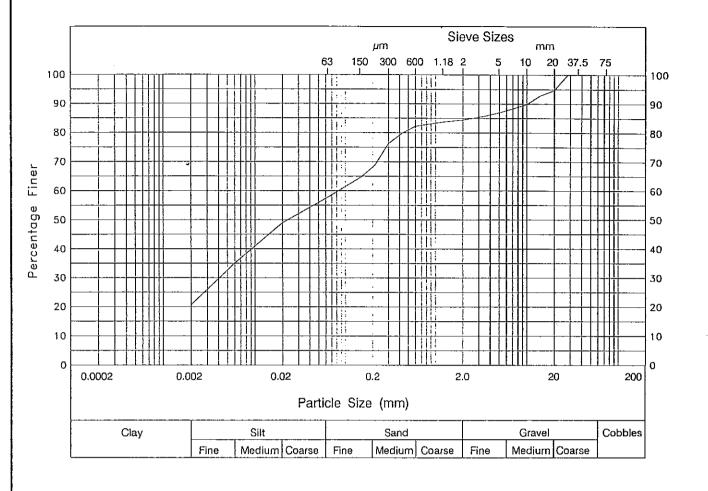

Particle Size	% Passing	Particle Size	% Passing
37.5 mm	100	300 μm	32
28 mm	74	212 μm	31
20 mm	55	150 µm	30
14 mm	51	63 μm	29
10 mm	46	20 µm	23
6.3 mm	43	6 µm	18
5 mm	42	2 μm	14
3.35 mm	41		
2 mm	40		ļ
1.18 mm	39		
600 µm	36		
425 μεπ	33		
Hole	Description		
TP12	Light orangish	grey clayey sand	y GRAVEL
Depth			
1.80 -2.00			
Туре			
В			
Test Performed	Uniformity Coefficient not applicable.		
Wet		<u> </u>	

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/24

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	69
14 mm	96	63 μm	63
10 mm	94	20 μm	58
6.3 mm	92	6 µm	43
5 mm	91	2 μm	30
3.35 mm	90		
2 mm	89		
1.18 mm	89		-
600 μm	87		
425 μm	83		
300 μm	79		
212 µm	72		
Hole	Description	•	
TP12	Reddish brown	slightly gravell	y sandy CLAY
Depth			
3.00 -3.10			
Туре			
В	·		
Test Performed	Uniformity	Coefficient not a	oplicable.
Wet			

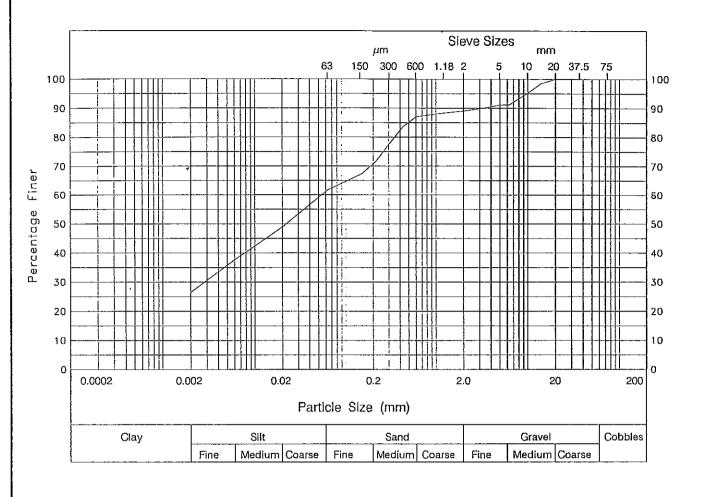

		Form 25/
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/25

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 μm	87
14 mm	97	63 μm	81
10 mm	97	20 μm	43
6.3 mm	96	6 µm	28
5 mm	96	2 μm	20
3.35 mm	96		
2 mm	96		
1.18 mm	96		
600 μm	96		
425 μm	94		
300 μm	93		
212 μm	89		}
Hole	Description		
TP13	Orange and grey	slightly sandy	slightly
Depth	gravelly CLAY		
0.30 -0.50	4		
Туре			
В			
Test Performed	Uniformity Co	efficient not ap	plicable.
Wet	<u> </u>		

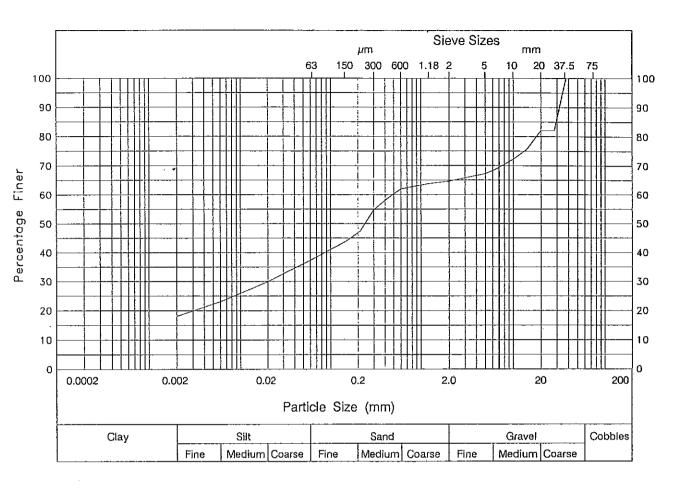


		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/26

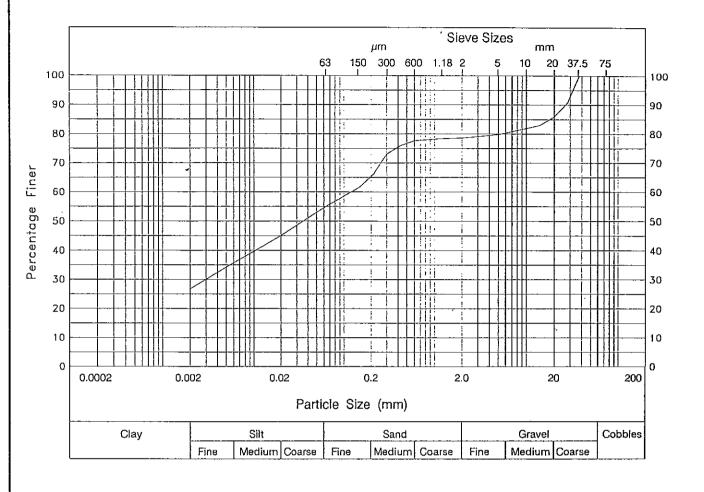
		· · · · · · · · · · · · · · · · · · ·			
Particle Size	% Passing	Particle Size	% Passing		
20 mm	100	150 μm	70		
14 mm	97	63 μm	62		
10 mm	94	94 20 µm			
6.3 mm	93	6 μm	39		
5 mm	92	2 μm	27		
3.35 mm	91				
2 mm	90				
1.18 mm	90				
600 μm	88				
425 μm	86				
300 μm	82				
212 μm	75				
Hole	Description				
TP13	Orangish grey slightly gravelly sandy CLAY				
Depth					
1.40 -1.50					
Туре					
В	•				
Test Performed	Uniformity Co	pefficient not ap	plicable.		
Wet			•		


		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/27

Particle Size	% Passing	Particle Size	% Passing			
28 mm	100	212 μm	69			
20 mm	95	150 µm	65			
14 mm	93	63 μm	58			
10 mm	90	20 μm	49			
6.3 mm	88	6 µm	35			
5 mm	87	2 μm	21			
3.35 mm	86					
2 mm	84					
1.18 mm	84	{				
600 μm	82		j			
425 μm	80	<u> </u>				
300 μm	76					
Hole	Description					
TP13	Dark purplish b	orown mottled gre	y slightly			
Depth	gravelly sandy CLAY					
2.60 -2.80						
Туре						
В						
Test Performed	Uniformity Co	efficient not ap	plicable.			
Wet	<u> </u>					


		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/28

Particle Size	% Passing	Particle Size	% Passing
20 mm	100	150 µm	67
14 mm	99	63 µm	62
10 տա	95	20 µm	49
6.3 mm	91	6 µm	38
5 mm	91	2 µm	26
3.35 mm	90		
2 mm	89		
1.18 mm	88		
600 μm	87		
425 μm	83		
300 μm	77		
212 µm	71		
Hole	Description		
TP14	Dark reddish b	rown mottled grey	slightly
Depth	sandy gravelly	CLAY	
0.90 -1.00			
Туре			
В			
Test Performed	Uniformity Co	pefficient not ap	oplicable.
Wet			



		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/29

Darkiela Cina	P/ Decelor	Davida Civa	9/ Dossina				
Particle Size	% Passing	Particle Size	% Passing				
37.5 mm	100	300 μm	55				
28 mm	82	212 μm	47				
20 mm	82	150 μπ	44				
14 mm	76	63 µm	38				
10 mm	72	20 μm	30				
6.3 mm	69	6 μm	23				
5 mm	67	2 μm	18				
3.35 mm	66						
2 mm	65						
1.18 mm	64						
600 μm	62						
425 μm	59						
Hole	Description		,				
TP15	Dark orange and reddish brown sandy gravelly						
Depth	CLAY						
1.00 -1.00							
Туре							
В			_				
Test Performed	Uniformity Co	efficient not ap	plicable.				
Wet							

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract 121070
Exploration Associates	Football Association	Sheet L2/30

	····				
Particle Size	% Passing	Particle Size	% Passing		
37.5 mm	100	300 μm	73		
28 mm	91	212 μm	66		
20 mm	86	150 μm	62		
14 лип	83	63 μm	55		
10 mm	82	45			
6.3 mm	80	36			
5 mm	80	27			
3.35 mm	79				
2 mm	79				
1.18 mm	78				
600 µm	78				
425 μm	76				
Hole	Description				
TP15	Reddish brown s	andy gravelly CL	AY		
Depth					
3.80 -3.90					
Туре					
В					
Test Performed	Uniformity Co	efficient not app	plicable.		
Wet					

		Form 25/4
Laboratory - Particle Size Plot	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L2/31

TP1	Sam	ples			Earl	thwo	rks						·	-		
TP1 1.20- 8 Orangial grey sandy gravelty CLAY	Hole	Depth	Туре	Description			Тор	Base	l - .	γ _b Mg/m ³	Comp Type	w% (Opt) <nat></nat>	γ _d (max) ₃ Mg/m	ρ _{s 3} Mg/m	% ret 20/ 37.5 mm	MCV
TP2A			8							1.86		(15)	(1.84)		2.5/	
Part 2.90										t		14				
TP1 2.90- 8 Orange and red slightly sandy gravelly CLAY 2.25 MeV 2										ſ		l	!			
TP1 2.90- B Orange and red slightly sandy gravelly CLAY										,	1	l				
3.00 Sandy gravelly CLAY										1	i .	1			8	12.7
Record R	TP1	2.90-	В	Orange and red slightly					-		4.5kg	(10)	(2.09)	2.65	4.8/	
Part		3.00		sandy gravelly CLAY						ł .		<13>			0	
TP2A										•	1	į.				
TPZA										ŀ	,	1				
TP2A										I		1	1			
TP2A 0.80- 0.80 B Orange, red and grey slightly gravelly sandy CLAY										1	•	1			n	13.6
TPZA 0.80- 0.80 B Orange, red and grey slightly gravelly sandy CLAY				į						į.		1				8.4
TP2A 0.80- 0.80										l .	i	1				3.0
1.71 2.5kg 10 1.55 0 0 1.84 2.5kg 17 1.57 1.93 2.5kg 23 1.61 1.92 2.5kg 23 1.61 1.92 2.5kg 23 1.61 1.92 2.5kg 26 1.52 2.18 MCV 14 1.91 0 1.6 1.96 1.96 1.77 1.98 MCV 26 1.57 0 5. 1.98 1.67 0 8. 1.98 2.5kg 25 1.58 1.67 0 8. 1.98 2.5kg 2.5kg 2.5kg 2.5kg 2.5kg 2.5kg 1.67 0 8. 1.98 1.98 2.5kg 2										1.65	MCV	9.0	1.51		0	17.0
TP4 0.30- 0.40 B Orange mottled yellow slightly gravelly sandy CLAY TP4 0.40 TP5 1.98 CLAY TP5 1.98 TP6 1.88 TP7 1.99 TP7 1.99 TP8 1.89 TP8 1.89 TP9 1.89	TP2A		В	1								(20)		2.65	2.3/	
TP4 0.30- B Orange mottled yellow slightly gravelly sandy CLAY		0.80		1						1		i e	1 :		0	
2.03 2.5kg 21 1.68 1.98 2.5kg 23 1.61 1.92 2.5kg 26 1.52 2.18 MCV 14 1.91 0 14 1.91 2.08 MCV 21 1.73 0 10 1.00				CLAY						1	1		I			
1.98 2.5kg 23 1.61 1.92 2.5kg 26 1.52 2.18 MCV 14 1.91 0 16 1.92 2.17 MCV 18 1.84 0 1.47 1.73 0 10 1.73 0 10 1.73 0 1.73 0 1.74 1.98 MCV 23 1.67 0 8. 1.98 MCV 26 1.57 0 5. 1.98 MCV 26 1.57 0 5. 1.98 MCV 26 1.57 0 5. 1.98 1.98 2.5kg 22 1.58 1.51 0 1.78 2.5kg 22 1.58 1.98 2.5kg 24 1.60 4.5kg 1.80 1.79 2.65 0.97 2.07 4.5kg 16 1.78 0 2.06 4.5kg 18 1.80 2.06 4.5kg 18 1.80 2.06 4.5kg 20 1.71 1.99 4.5kg 20 1.71 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9. 1.98 MCV 29 1.53 0 9.		<u> </u>								1	1	ŀ				
TP4 0.30- B Orange mottled yellow slightly gravelly sandy CLAY TP4 0.40 Slightly gravelly sandy CLAY TP5 1.98 CLAY TP6 1.98 CLAY TP7 1.98 CLAY TP7 1.98 CLAY TP8 1.98 CLAY TP9 1.98										1	1	l				
2.18 MCV 14 1.91 0 16		į							[1	•	ŀ	I			
Carry Carr										1	ł	į.			0	16.5
TP4 0.30- 0.40 B Orange mottled yellow slightly gravelly sandy CLAY		j								2.17	MCV	18	1.84		0	14.4
TP4 0.30- B Orange mottled yellow slightly gravelly sandy CLAY 1.78 MCV 26 1.57 0 5. 2.5kg (24) (1.60) 2.65 0.9/ 1.78 2.5kg 18 1.51 0 0 1.98 2.5kg 22 1.58 1.98 2.5kg 24 1.60 4.5kg (18) (1.79) 2.65 0.9/ 2.07 4.5kg 16 1.78 2.12 4.5kg 18 1.80 2.06 4.5kg 19 1.73 2.05 4.5kg 20 1.71 1.99 4.5kg 13 1.76 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.90										1	MCV	21			0	10.3
TP4 0.30- 0.40										1		1				8.2 5.9
0.40 slightly gravelly sandy 1.78 2.5kg 18 1.51 0 1.93 2.5kg 22 1.58 1.98 2.5kg 25 1.58 1.98 2.5kg 24 1.60 4.5kg 16 1.78 0 2.07 4.5kg 18 1.80 2.06 4.5kg 19 1.73 2.05 4.5kg 13 1.76 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.																
CLAY 1.93	TP4		В	-						1 70				2.65		
1.98 2.5kg 25 1.58 1.98 2.5kg 24 1.60 4.5kg (18) (1.79) 2.65 0.9/ 2.07 4.5kg 16 1.78 0 2.12 4.5kg 18 1.80 2.06 4.5kg 19 1.73 2.05 4.5kg 20 1.71 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.		0.40		1									1		U	
1.98 2.5kg 24 1.60 4.5kg (18) (1.79) 2.65 0.9/ 2.07 4.5kg 16 1.78 0 2.12 4.5kg 18 1.80 2.06 4.5kg 19 1.73 2.05 4.5kg 20 1.71 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.	-			GLAI			·			1	1		1			
4.5kg (18) (1.79) 2.65 0.9/ 2.07 4.5kg 16 1.78 0 0 0 0 0 0 0 0 0										1			1			
2.12 4.5kg 18 1.80 2.06 4.5kg 19 1.73 2.05 4.5kg 20 1.71 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.											1		1	2.65	0.9/	
2.06 4.5kg 19 1.73 2.05 4.5kg 20 1.71 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.										1					0	
2.05 4.5kg 20 1.71 1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.	1									1		ŀ				
1.99 4.5kg 13 1.76 1.98 MCV 29 1.53 0 9.										1	1					
1.98 MCV 29 1.53 0 9.										5			ž l			
				•						1			1		0	9.2
														,		
									<u> </u>							
		<u> </u>				-										
		 					:									
Remarks	Rem	ı arks	<u> </u>	<u> </u>	<u> </u>	L	L	<u> </u>	<u>L</u>	<u> </u>	<u> </u>		L			<u> </u>

Form 6/2

Laboratory - Compaction, CBR & MCV Summary

Exploration Associates

Project
BYRKLEY PARK

Contract

121070

Football Association

Sheet

L3/1

San	ples			Earl	thwoi	'ks			•			•			
Hole	Depth	Туре	Description	CBR Top	CBR Base	CBR Top w%	CBR Base w%	CBR Surch kg.	γ _b Mg/m	Comp Type	w% (Opt) <nat></nat>	⁷ d (max) ₃ Mg/m	ρ _s Mg/m	% ret 20/ 37.5 mm	MCV
TP48	1.00-	В	Grey clayey GRAVEL of mudstone					•	2.12 2.05 2.10 2.02 1.98	4.5kg 4.5kg 4.5kg 4.5kg 4.5kg 4.5kg		(1.82) 1.77 1.66 1.82 1.79 1.80		14/	
								-	1.72 1.77 1.78 1.98	MCV MCV MCV	19 23 15 12	1.44 1.44 1.55 1.76		0 0 0	12.2 6.2 18.0 14.8
TP5	0.70-	8	Dark orangish brown and reddish brown mottled grey sandy gravelly CLAY						2.21 2.23 2.20	4.5kg 4.5kg 4.5kg 4.5kg 4.5kg 4.5kg MCV MCV MCV	<19>	(2.01) 1.77 1.95 2.00 2.00 1.95 1.48 1.47 1.46 1.53	2.65	4.7/ 0 0 0 0	10.5 15.4 16.9 18.0
TP5	1.70-	В	Dark reddish brown and grey mottled slightly gravelly sandy CLAY						2.19 2.08 2.27 2.30 2.13 1.66 1.78 1.64 1.60	4.5kg 4.5kg 4.5kg 4.5kg 4.5kg 4.5kg MCV MCV MCV	<16>	(2.12) 1.90 1.74 2.03 2.12 2.01 1.47 1.54 1.46 1.48	2.65	4.7/ 0 0 0 0	10.3 4.1 15.2 18.0
ТР6	1.50-	8	Reddish brown mottled grey slightly gravelly sandy CLAY					i talendari i tale	2.16 2.05 2.20 2.24 2.10 1.71 1.79 1.66 1.62	4.5kg 4.5kg 4.5kg 4.5kg 4.5kg MCV MCV MCV MCV	<17> -21 14 11	(2.03) 1.85 1.70 1.93 2.03 1.95 1.48 1.51 1.46 1.48	2.65	2.8/ 0 0 0 0	12.2 7.8 16.0 18.0
Rem	arks							the similar design and the second an							

Laboratory - Compaction, CBR & Project SYRKLEY PARK Football Association

Exploration Associates

Project SYRKLEY PARK 121070

Sheet L3/2

San	ples			Ear	thwo	rks									
Hole	Depth	Туре	Description	CBR Top	CBR Base	CBR Top w%	CBR Base w%	CBR Surch	γ _b Mg/m	Comp Type	w% (Opt) <nat></nat>	γ _d (max) ₃ Mg/m	ρ _{s 3} Mg/m³	% ret 20/ 37.5 mm	MCV
TP8	1.50-	В	Orangish brown slightly	-					, , , , , , , , , , , , , , , , , , ,			(2.03)	1	2.6/	
110	1.60		gravelly sandy CLAY				İ		2.13	4.5kg		1.98		0	
								}	2.22	4.5kg	10	2.01			
									2.19	4.5kg	13	1.94			
	ļ								2.19	4.5kg		1.93			
									2.00	4.5kg	6.5	1.88			
									2.13	MCV	19	1.79		0	8.0
						ļ			2.24	MCV	12	1.99		0	13.6
									2.19	MCV	15	1.91		0	10.6
								ļ	2.08	MCV	20 16	1.73		0	8.6
	ļ														
TP9	1.50-	В	Reddish brown slightly							4.5kg	l	(2.05)	2.65	2.8/	
	1.60		sandy gravelly CLAY						2.18	4.5kg		1.89		41	
		İ		}					2.12	4.5kg		1.81			
							}		2.25	4.5kg		2.02			
	}								2.27	4.5kg 4.5kg	11 6.7	2.04			
									1.74	MCV	13	1.54		0	15.1
		ļ							1.73	MCV	16	1.49		0	8.0
									1.64	MCV	12	1.46		0	10.8
		Į		ľ				ļ	1.61	MCV	10	1.46		0	18.0
		<u> </u>								2 54-	(20)	(1.67)	2 45	0/	
TP10	0.40-	В	Orangish brown mottled						1.85	2.5kg 2.5kg		1.54	2.00	0	
	0.50		grey slightly sandy						1.98	2.5kg	1	1.66		"	
			slightly gravelly CLAY						2.01	2.5kg	1	1.64			
									1.95	2.5kg	j .	1.56			
TD40	0.00		Bull and the sunata assets					}		/ 5kg	(0.5)	(2.02)	2 65	7.2/	
TP10	0.90-	В	Dark reddish purple sandy						2 12	4.5kg	ı	1.78	2.05	0	
	1.00		gravelly CLAY						2.06	4.5kg		1.70		"	
									2.21	4.5kg		1.92			
							1		2.24	4.5kg		1.99			
									2.15	4.5kg	1	2.01			
									1.71	MCV	_18	1.46		0	10.0
									1.76	MCV	20	1.46		0	2.0
	}								1.66	MCV	14	1.46		0	14.7
									1.63	MCV	11	1.46		0	18.2
TP11	1.10-	В	Orange and reddish brown							4.5kg	(12)	(2.00)	2.65	2.4/	
	1.20		slightly sandy gravelly						2.16	4.5kg	E .	1.85		0	
			CLAY						2.09	4.5kg	18	1.77			
	E:			į	ļ				2.24	4.5kg	1	1.98			
									2.18	4.5kg	1	1.99			1
				1				1	2.13	4.5kg	1	1.97	1		
									1.70	MCV	14	1.49	ţ	0	11.2
				1					1.79	MCV	17	1.53	1	0	9.0
									1.65	MCV	13 7.4	1.46	1	0	18.0
									1.50	PIC V	'."	'.00			.5.3
										<u> </u>			<u> </u>		
Ren	narks													For	m 6/2
			Compaction, CBR & Pro	ject							Tc	ontrac			<u> </u>
Laboratory - Compaction, CBR & Project MCV Summary Project BYRKLEY PARK 121070															

Laboratory - Compaction, CBR & Project Summary Project PARK Football Association Sheet L3/3

San	nples			Earl	thwo	rks									
Hole	Depth	Туре	Description	CBR Top	CBR Base	CBR Top w%	CBR Base w%	CBR Surch kg.	γ _b Mg/m³	Comp Type	w% (Opt) <nat></nat>	γ _d (max) ₃ Mg/m	ρ s 3 Mg/m	% ret 20/ 37.5 mm	MCV
TP12	0.40- 0.50	8	Orangish brown mottled grey sandy gravelly CLAY						2.05	2.5kg 2.5kg	(11) 8.3	(1.98) 1.89	1 I	2.9/	
									2.15 2.17 2.14	2.5kg 2.5kg 2.5kg		1.94 1.92 1.88			
TP12	1.40-	В	Orange and grey slightly							2.5kg 4.5kg		1.96 (1.96)	2 45	25/	
1712	1.80		sandy very gravelly CLAY						2.14	4.5kg 4.5kg	<19>	1.80 1.70	2.03	6.5	
									2.19 2.17 2.08	4.5kg 4.5kg 4.5kg	17 11 6.7	1.87 1.96 1.95			
									1.70	MCV	17	1.46		0	9.9
									1.78	MCV	20 13	1.48		0	5.8 12.2
									1.73	MCV	9.6	1.58	-	0	18.0
TP13	1.40-	В	Orangish grey slightly							2.5kg	1	(1.91)	2.65	2.6/ 0	
	1.50		gravelly sandy CLAY						1.91	2.5kg 2.5kg	10	1.73		U	
									2.15	2.5kg	1	1.88			
									2.10	2.5kg	17	1.80			
) 		2.08	2.5kg MCV	18 18	1.77		0	8.9
тр14	0.90-	8	Dark reddish brown							2.5kg	1	(1.80)	2.65	0/	
	1.00		mottled grey slightly sandy gravelly CLAY						1.86	2.5kg 2.5kg	11 15	1.67		0	
			sandy gravetty ctat						2.08	2.5kg	16	1.79			
				1					2.08	2.5kg	18	1.76			
									2.07	2.5kg	19	1.74			
TP14	4.00- 4.20	В	Dark reddish brown slightly sandy gravelly						2.28	4.5kg 4.5kg	1	(2.13) 2.03	2.65	6.3/ 7.6	
,	7.20		CLAY						1	4.5kg	1	1.93		7.0	
									2.16	4.5kg		1.87			
									2.30	4.5kg 4.5kg		2.10			
						}			1.63	MCV	10	1.47		0	11.2
									1.67	MCV	14	1.46		0	8.6
			<u> </u>						1.71	MCV	15	1.48		0	5.2 17.5
		1 1 1							1.60	MCV	8.2	1.47			17.5
													- Carrier Carr		
													-		
			,												
Rem	arks											-			

Remarks		Form 6/2
Laboratory - Compaction, CBR & MCV Summary	Project BYRKLEY PARK	Contract
Exploration Associates	Football Association	Sheet L3/4

Sar	nples			Eart	hwoi	'ks						-			
Hole	Depth	Туре	Description	CBR Top	CBR Base	CBR Top w%	CBR Base w%	I = .	γ _{b 3} Mg/m	Comp Type	w% (Opt) <nat></nat>	γ _d (max) Mg/m	ρ s Mg/m	% ret 20/ 37.5 mm	MCV
TP15	1.00-	В	Dark orange and reddish brown sandy gravelly CLAY					,	2.13 2.06	4.5kg 4.5kg 4.5kg	(12)	(1.97) 1.80 1.70		7.3/ 1.6	
									2.21 2.16	4.5kg 4.5kg	15 9.8	1.93			
									2.12 1.70 1.72	4.5kg MCV MCV	8.0 18 19	1.96 1.44 1.45		0	12.0 8.7
									1.71	MCV MCV	13 9.4	1.52 1.59		0	14.8 18.0
TP16	2.10-2.20	В	Dark red slightly sandy gravelly CLAY						2.16 2.10	4.5kg 4.5kg 4.5kg	<16>	(2.10) 1.87 1.79	2.65	2.6/ 0	
					The state of the s				2.27 2.30	4.5kg 4.5kg 4.5kg		2.05 2.09 2.07			
									1.65 . 1.77	MCV MCV	14 16	1.45 1.53		0	10.2 5.4
									1.63	MCV	12 9.0	1.46		0	14.0 18.2
		‡													-
											-				
		-									1				
							A								
	narke														

Laboratory -	Compaction, CBR & MCV Summary

Exploration Associates

Project

BYRKLEY PARK
Football Association

Form 6/2

Contract 121070

Sheet L3/5

Expl
W

운

TPI

IP1

Comp/CBR X> 20mm=2.5 37.5mm=0 Comp/CBR %> 20mm=4.8 37.5mm=0 Test Remarks and Notes 31%/26%/25%/17% 26%/33%/25%/16% 30 : CL(/+)S1/SA/GR PSD : CL(/+)SI/SA/GR OTHER MCV % > 20mm = 8.1 MCV % > 20mm = 0.0 Contract LABORATORY TEST SUMMARY SHEET 50₃ 50₃ (50₄) Soll Water 9/1# CHEMICAL 五 9.3 2.09 9.1 2.07 12 1.48 13.6 15 1.51 8.4 14 1.52 3.0 8.7 1.51 17.0 ŞΩ 12.7 (10) (2.09) کم/wa/ma 1.83 1.73 1.9 1.82 1.87 1.69 1.76 1.8 COMPACTION EARTHWORKS 18 CBR Water (E) 00 14 15 17 19 Comp 6' m' c' Type/ Deg. m²/MN m²yr Mould HVU HVU HVU HVU HVU MCV MCV MCV CONSOL-IDATION Project ø ø ပ ပဲ မွီ STRENGTH 60 103 39 Mg/m Type kPa k 20 20 20 교 교 교 CLASSIFICATION TESTS Nat Water 7 ឧ 9 ï 425 Sieve 20 16 Sieve 24 <u>o</u> 425 17 Prep ° 8 <425 % \% 78% % & For full explanation of symbols please see key sheet Orange and red slightly sandy gravelly CLAY Reddish brown sandy gravelly CLAY Orangish grey sandy gravelly CLAY Orangish grey sandy gravelly CLAY Description oration Associates One large SILISTONE SAMPLE DETAILS ۵ Š Š മ മ ထ Δ 2.90 - 3.00 3.20 - 3.30 3.50 - 3.50 1.20 - 1.30 1.20 - 1.30 Depth ٤ NOTES

TP1

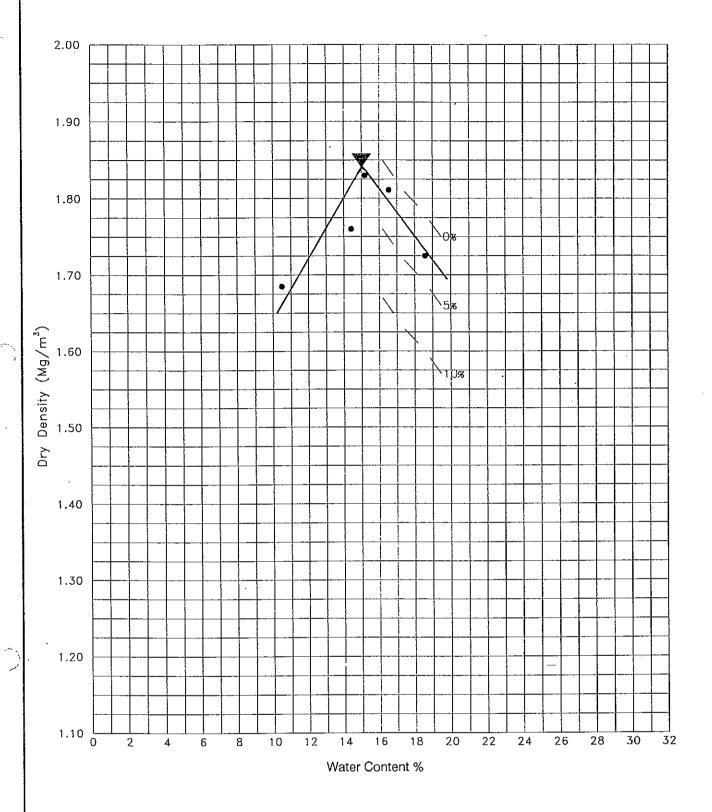
121070

13/6

Sheet

Football Association

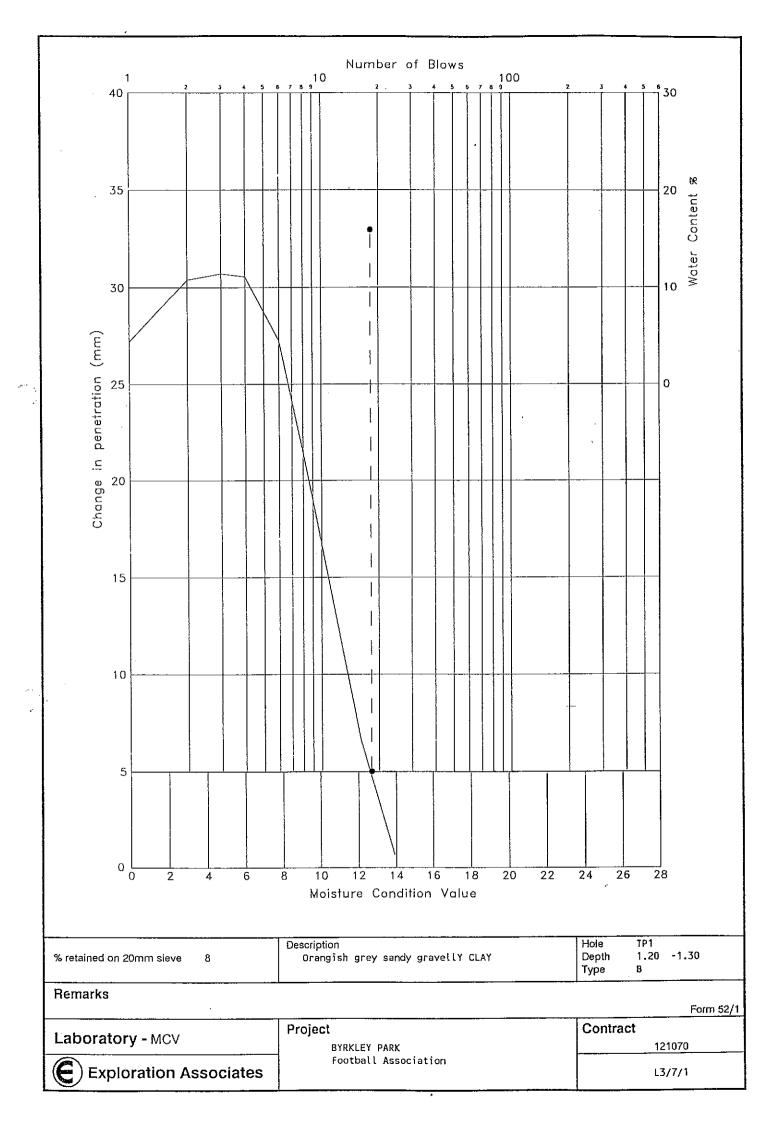
U/C: Unconsolidated/Consolidated U/D: Undrained/Drained Λ with P.W.P. measurement Dlameter in mm T: Single Stage Trioxiai M: Multistage Trioxial REM: Remoulded REC: Reconstituted V: Vane SB: Shear Box (resid) m_V and c_V given for load increment of 100xPo above assumed overburden pressure std: 2.5kg Hvy; 4.5kg Vib: Vibratory Mould - P: Proctor C: CBR $^{\gamma}$ d (max) Water% (Optimum) <Naturals CBR - T: Tap B: Base A: Average REL - Relationship Test

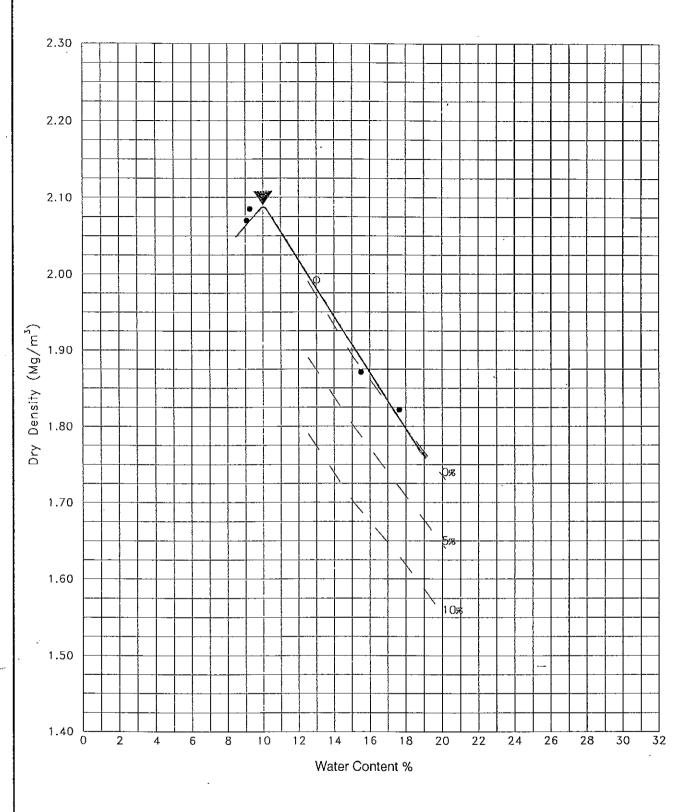

CONSOLIDATION COMPACTION EARTHWORKS

SHEAR STRENGTH

F

10.

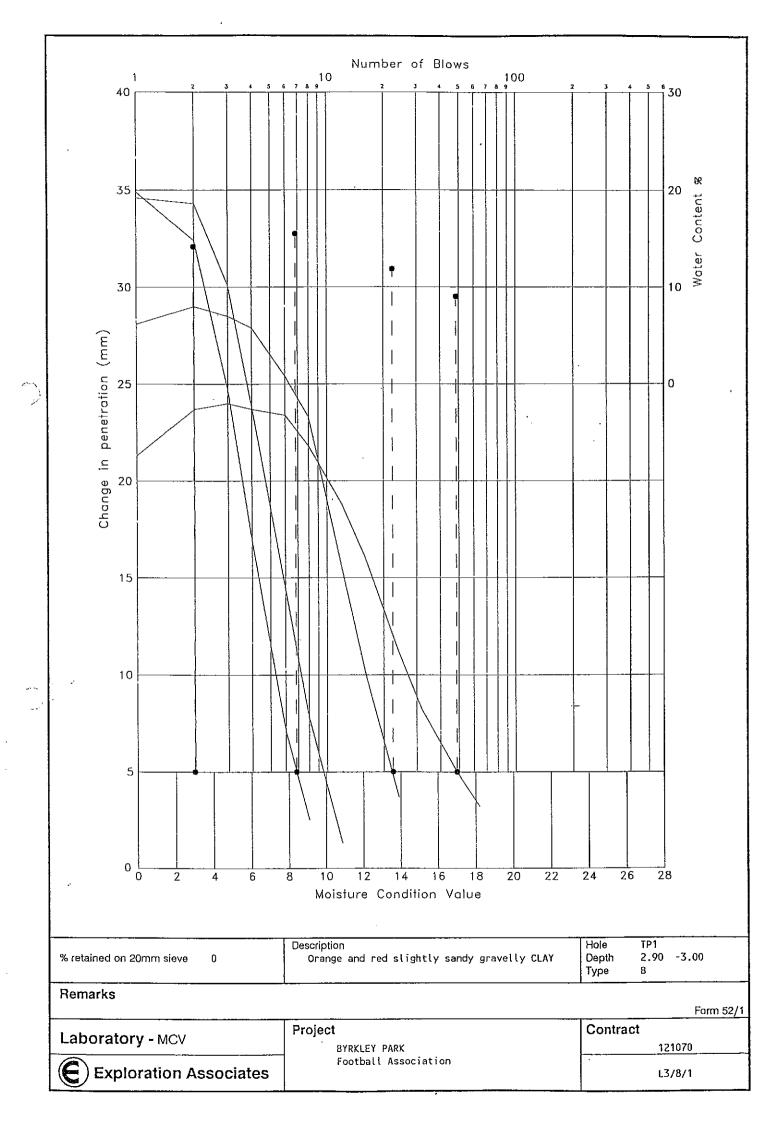

BYRKLEY PARK



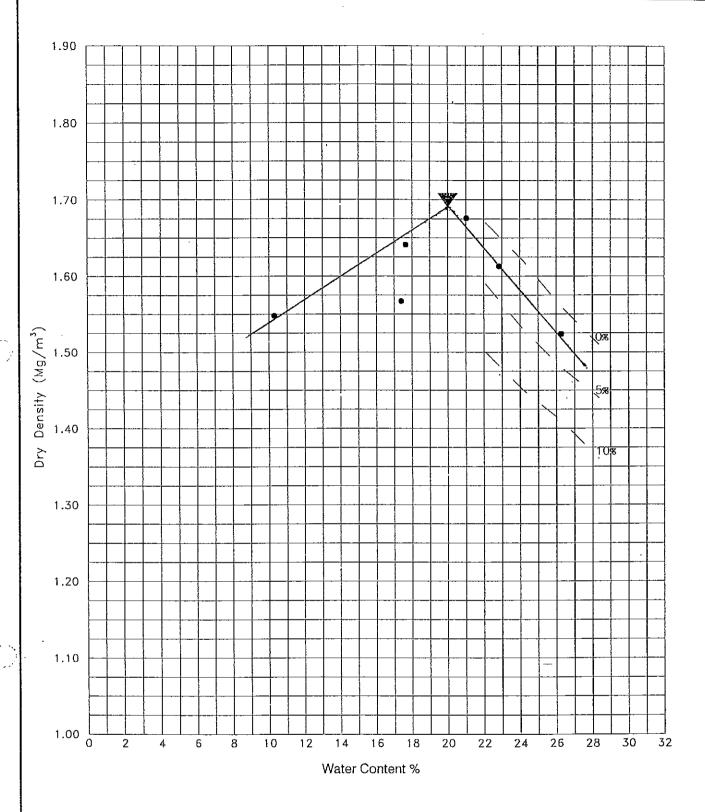
- Moisture Content/Dry Density
 Compaction at Natural Water Content
 Maximum Dry Density/Optimum Water Content

ı	Type of Test/Mould	2.5Kg/1Ltr	Description	Hole	TP1	
	Particle Density Assumed Maximum Dry Density	2.65 Mg/m ³ 1.84 Mg/m ³	Orangish grey sandy gravelly CLAY	Depth	1.20 -1.30	İ
1	Optimum Water Content	15 %				- 1
	% retained 37.5mm sieve	0		Type	8	- 1
	% retained 20mm sieve	2			Form 54	<u>/0</u>

Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/7



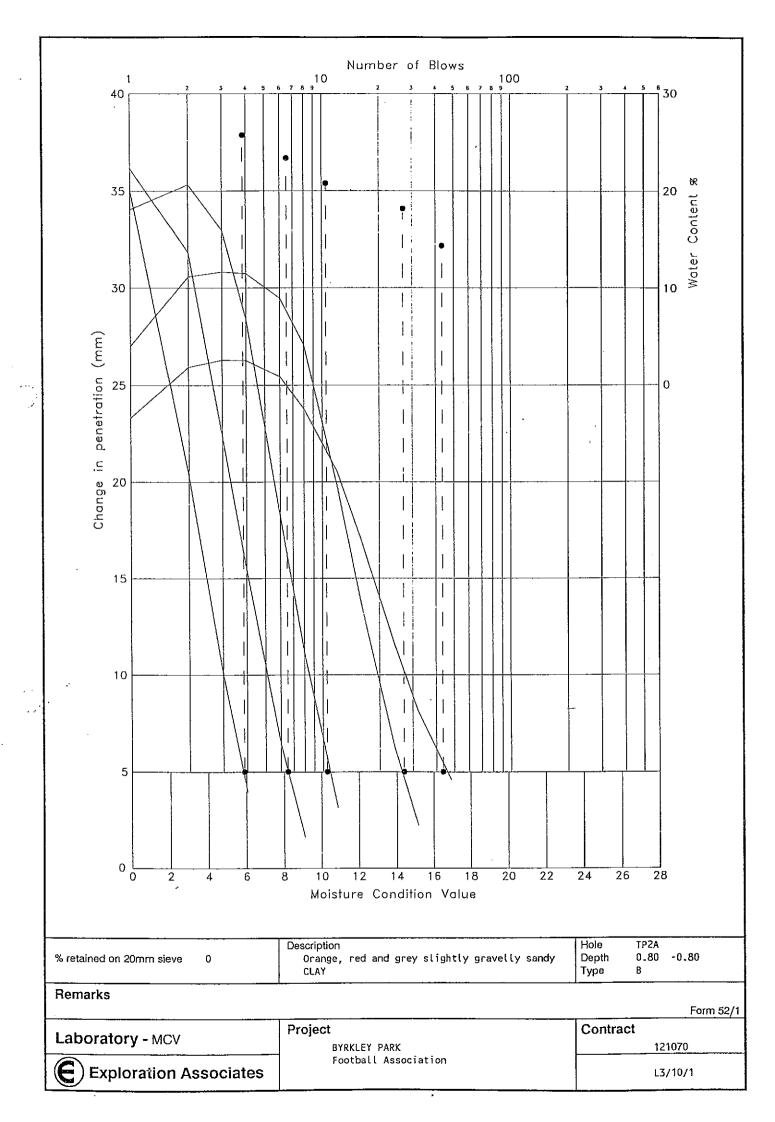
- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content


Type of Test/Mould	4.5Kg/1Ltr	Description	Hole	TP1	
Particle Density Assumed Maximum Dry Density	2.65 Mg/m ³ 2.09 Mg/m ³	Orange and red slightly sandy gravelly CLAY	Depth	2.90	-3.00
Optimum Water Content % retained 37,5mm sieve	10 % 0		Туре	R	
% retained 20mm sieve	5		1,720		Form 54/0
Remarks					

Laboratory Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/8

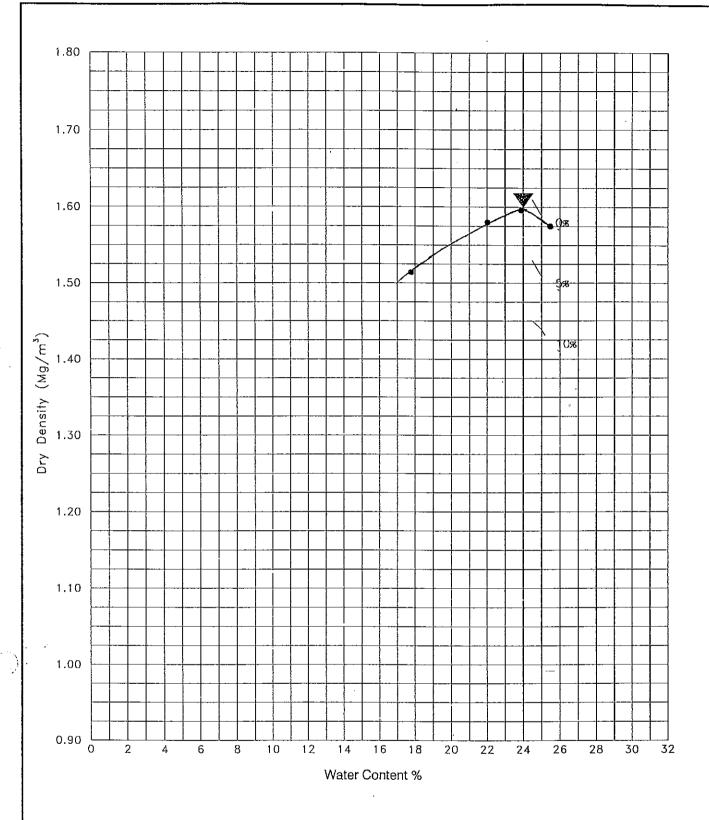
Associates
ation
xplora

OTHER	Test Remarks and Notes	PSD : CL(/+)S1/SA/GR 40x/23x/75x/12x Comp/CBR %> 20mm=2.3 37.5mm=0 MCV % > 20mm = 0.0 PSD : CL(/+)S1/SA/GR 27%/73%/18/0%	Contract	Sheet L3/9
CHEMICAL	SO ₃ SO ₃ (SO ₄) PH Soil Water % g/litr			Form 40/4
COMPACTION	Comp Comp	Std (20) (1.69) Std 10 1.55 Std 17 1.57 Std 18 1.64 Std 21 1.68 Std 23 1.61 Std 23 1.61 KCV 14 1.91 16.5 KCV 21 1.73 10.3 KCV 22 1.57 5.9 KCV 26 1.57 5.9	P PARK	Footpal! Association
CONSOL-	12/min		Project	
SHEAR	Sikting II	REM 50 179 REM 50 189 REM 50 86 REM 50 55 REM 50 41	ent Dlameter In mm	ane SB: Shear Box (resi p Test
O ASSIEICATION TESTS	Prep Nat Y _B	48 Sleve 8	Λ with P.W.P. π	ided REC: Reconstituted V; Vane ed overburden pressure C: CBR $\gamma_{\rm c}$ (max) A: Average REL - Relationship Ie
SAMOI E DETAILS	cription W	Orange, red and grey slightly gravelly sandy CLAY Orange and reddish grey slightly sandy gravelly CLAY Greyish blue slightly sandy CLAY Bluish grey gravelly CLAY	For full explanation of symbols please see key sheet - U/C: Uncansolldated/Consolldated U/D: Undrained/Drained	T: Single Stage Triaxial M: Multistage Triaxial REM: Remoulded REC: Reconstituted V: Vane S m, and $\alpha_{\rm V}$ given for load increment of 100kPa above assumed overburden pressure - Sta: 2.5kg Hvy: 4.5kg VIb: Vibratory Mould-P: Practor C: CBR $\gamma_{\rm C}$ (max) Water% (Optimum) Valuations-nature CBR - T: Top B: Base A: Average REL - Relationship Test
	Type No.			
	Depth	0.80 - 0.80 0.80 - 0.80 1.90 - 2.50	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	고 하	1P2A 1P2A 1P2A	ž _l	



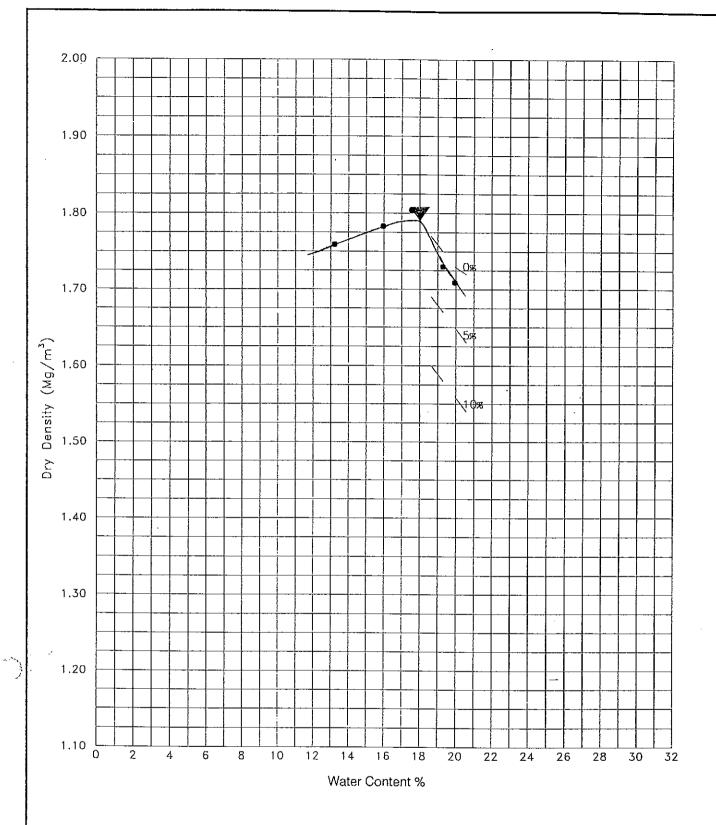
- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

Domarko				
% retained 20mm sieve	2			Form 54/0
% retained 37.5mm sieve	0		Туре	8
Optimum Water Content	20 %	CLAY		
Maximum Dry Density	1.69 Mg/m ³	Orange, red and grey slightly gravelly sandy	Depth	0.80 -0.80
Particle Density Assumed	2.65 Mg/m ³			
Type of Test/Mould	2.5Kg/1Ltr	Description	Hole	TP2A


Hemark	S
--------	---

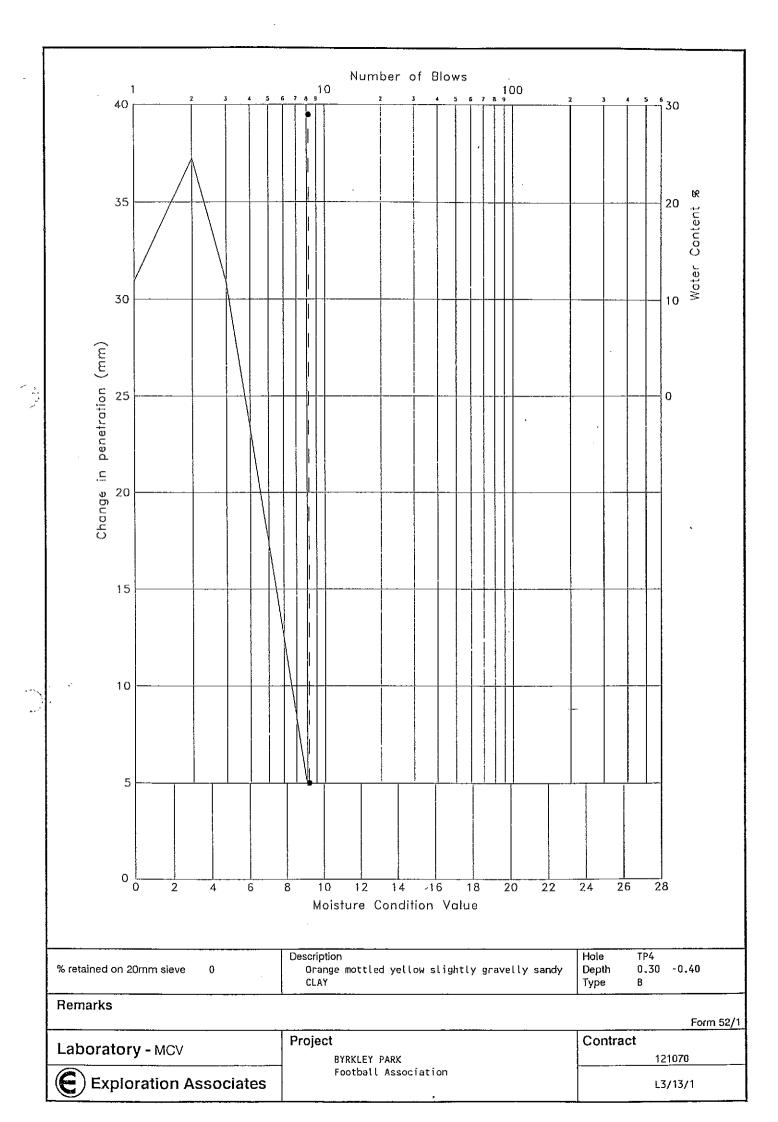
Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/10

Associates
Exploration
W

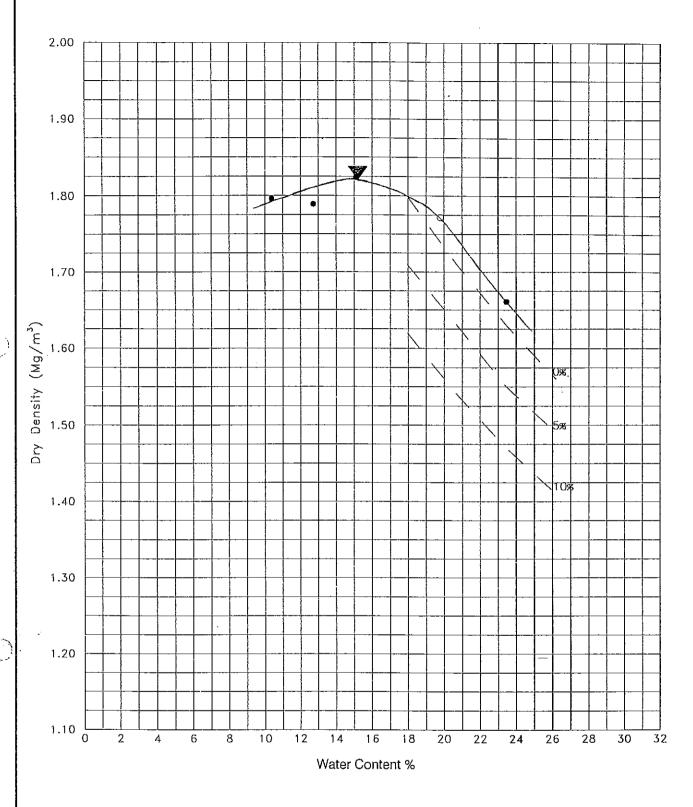

ER .	and Notes	22/7% 22x/7% n=0.9 37.5mm=0		24/GR 55/1%	SA/GR 1%/11%		121070
OTHER	Test Remarks and Notes	PSD : CL(/+)SI/SA/GR 49x/22x/22x/7x Comp/CBR %> ZOmm=0.9 37.5mm=0 Comp/CBR %> ZOmm=0.9 37.5mm=0 MCV % > 20mm = 0.9		PSD`: CL(/+)SI/SA/GR 751/194/51/1	PSD : CL(/+)SI/SA/GR 30x/57x/1x/11		Contract Sheet
CHEMICAL	SO ₃ SO ₃ (SO ₄) (S						Form 40/4
COMPACTION EARTHWORKS	CBR Water Y _{d 3} MCV % Mg/m	Std (24) (1.60) Std 18 1.51 Std 22 1.58 Std 25 1.58	(B) (C) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C				ject BYRKLEY PARK Football Association
CONSOL- IDATION	m, c, m²/MN m²/yr		3 £ £ £ £ £ £ £		·		Pro
SHEAR	Test on po C' Ø' Type kPa kPa Deg.	REM 50 431 REM 50 224 REM 50 175 REM 50 815	REM 50 643 REM 50 431 REM 50 175 REM 50 815				ent Diameter in mm ane \$B: \$hear Box (resid)
CLASSIFICATION TESTS	425 Prep Nat Y _b W _p Ip Water Y _b % Mg/m	90% 425 Sieve 62 30 32 28		987. 425 Sieve 23 44 35	35 89% 425 Sieve 42 25 17 34	ХЯ	et rained A with P.W.P. measurem toulded REC: Reconstituted V: V uned overburden pressure for C: CBR γ_d (max) e A: Average REL - Relationsh
SAMPLE DETAILS	Description	Orange mottled yellow slightly gravelly sandy CLAY		Orange mottled yellow slightly sandy gravelly CLAY Orangish grey slightly sandy slightly gravelly CLAY	Orangish grey slightly gravelly slightly sandy CLAY Bluish grey slightly sandy gravelly CLAY	Bluish grey slightly sandy gravelly CLAY	For full explanation of symbols please see key sheet - U/C: Unconsolidate/Consolidated U/D: Undrained/Drained A with P.W.P. measurement E T: Single Stoge Triaxial M: Multistage Triaxial REM: Remoulded REC: Reconstituted V: Vane 5 - m _V and c _V given for load increment of 100kPo above assumed overburden pressure - std: 2.6kg Hvy: 4.5kg V/b: Vibratory Mould - P: Proctor C: CBR
	ĭype No.	<u>ш</u>		Δ 68	<u> </u>	۵	ATION ATION KKS
	Depth m	0.30 - 0.40		0.70 - 0.80	0.70 - 0.80	1.50 - 1.60	NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS
	요 양 왕	1P4		164 164	TP4	TP4	ž

- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

Type of Test/Mould	2.5Kg/1Ltr	Description	Hole	TP4
Particle Density Assumed Maximum Dry Density	2.65 Mg/m ³ 1.60 Mg/m ³	Orange mottled yellow slightly gravelly sandy	Depth	0.30 -0.40
Optimum Water Content	24 %	CLAY	•	
% retained 37.5mm sieve	0		Туре	В
% retained 20mm sieve	1	·		Form 54/0

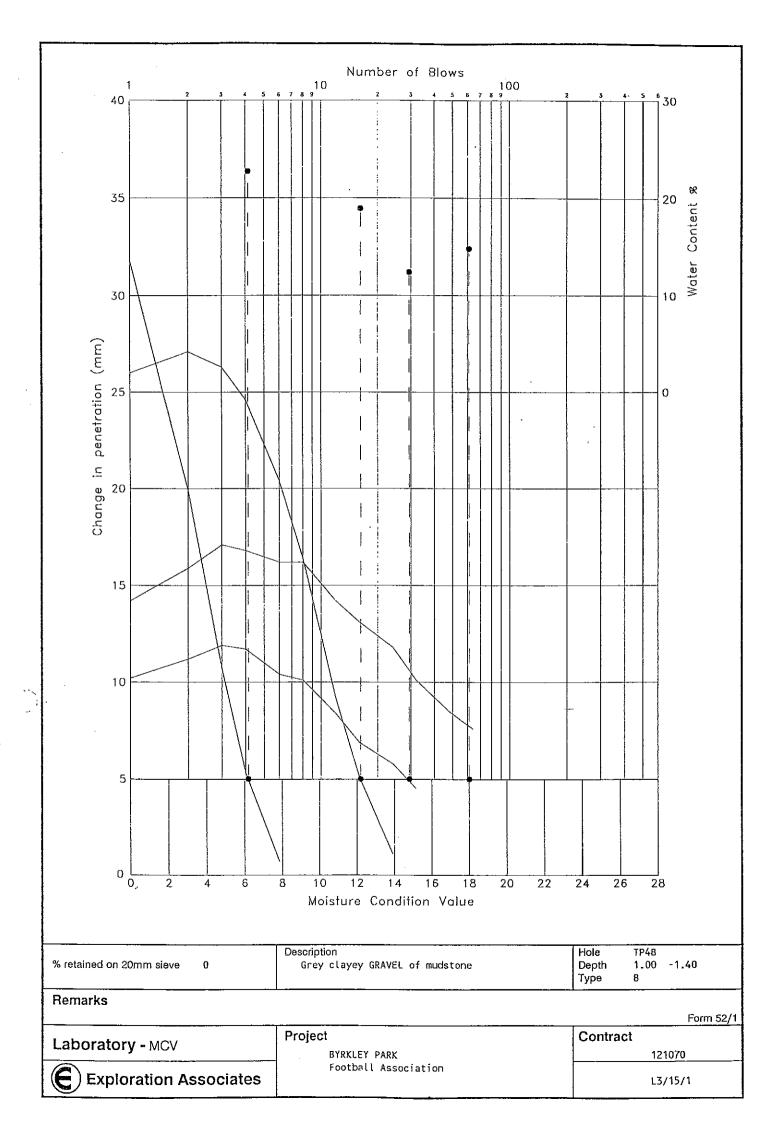

Laboratory Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/12

- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content


Type of Test/Mould	4.5Kg/1Ltr	Description	Hole	TP4	
Particle Density Assumed Maximum Dry Density Optimum Water Content % retained 37.5mm sieve	2.65 Mg/m ³ 1.79 Mg/m ³ 18 % 0	Orange mottled yellow slightly gravelly sandy CLAY	Depth Type	0.30 B	-0.40
% retained 20mm sieve	1				Form 54/0
Remarks		-			

Laboratory - Moisture Content/ Dry Density Relationship	Project	Contract	
Dry Density Relationship	BYRKLEY PARK	121070	
Exploration Associates	Football Association	L3/13	

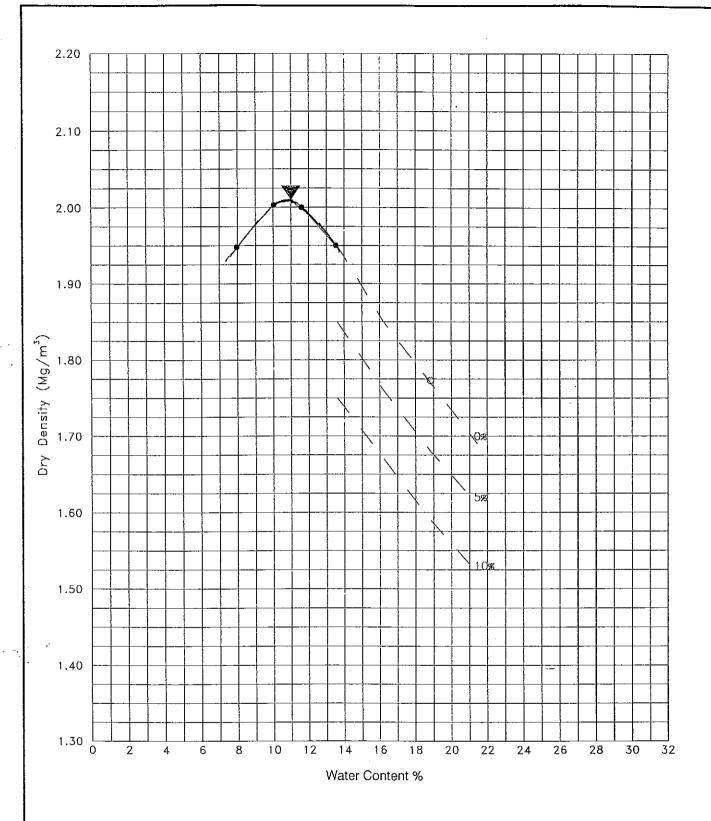
Associates
Exploration
W


OTHER	Test Remarks and Notes	Comp/CBR x > 20mm= 13.637.5mm=0 HCV x > 20mm = 0.0	Contract 121070	Sheet L3/14
1	50 ₃ (50 ₄) Water g/ftr			40/4
CHEMICAL	SO3 SO≝ %		_	Form 40/4
l H	H _d			
	NO.	12.2 6.2 18.0 14.8	-	1
N S		(1.82) 1.77 1.66 1.82 1.79 1.44 1.44 1.55 1.76		
COMPACTION	Water %	(3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		
No.5	CBR /		-	iation
	Comp C _V Type/ Im ² /yr Mould	HAYE HAYE HAYE HAYE HAYE HAYE MCV MCV MCV	PARK	Football Association
SOL-	2 3 % E		oject BYRKLEY PARK	ootball
CONSOL-	E 2 K		Project BYRKLE	7.
	D & Q		resign	
AR S	73 CO CO CO CO CO CO CO CO CO CO CO CO CO		Dlameter in mm SB: Shear Box (resid)	
SHEAR	KPa o a		Dlamet SB: She	
	Test			nlp Test
TESTS	7 PP Mg/m3		A with P.W.P. measurement REC: Reconstituted V. Vane	olotions
I Z	· + 0		W.P. me	ressure (max EL - Re
NOTACIETO NOTION	<u>o</u>		×ith P.	Trden 7
ASSIE	Y & & G & &			Overb S. CBR Avera
C	<425 W _L %		eet /Drothe	ssumed actor ()
SAMPLE DETAILS	Description	Grey clayey GRAVEL of mudstone	For full explanation of symbols please see key sheet U/C: Unconsoidated/Consolidated U/D: Undrained/Drained A with P.W.P. measurement T: Sincle Stace Triaxia M: Multistope Triaxia Remoulded REC: Reconstituted V: Vane	
, v	No.	ය ප	- II	' ' 2 0¬
			RENG	DATK CTION ORKS
	Depth	1.00 - 1.40	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	<u>구</u> 한 한	1248	ž	

- Moisture Content/Dry Density
 Compaction at Natural Water Content
 Maximum Dry Density/Optimum Water Content

	Type of Test/Mould Particle Density Assumed	4.5Kg/CBR	Description	Hole	TP4B	
- 1	Maximum Dry Density	2.65 Mg/m ³ 1.82 Mg/m ³	Grey clayey GRAVEL of mudstone	Depth	1.00	-1.40
	Optimum Water Content % retained 37.5mm sieve	15 % 0		Type	R	
ı	% retained 20mm sieve	14		.,,,-	-	Form 54/0
1	Domonico					

Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/15

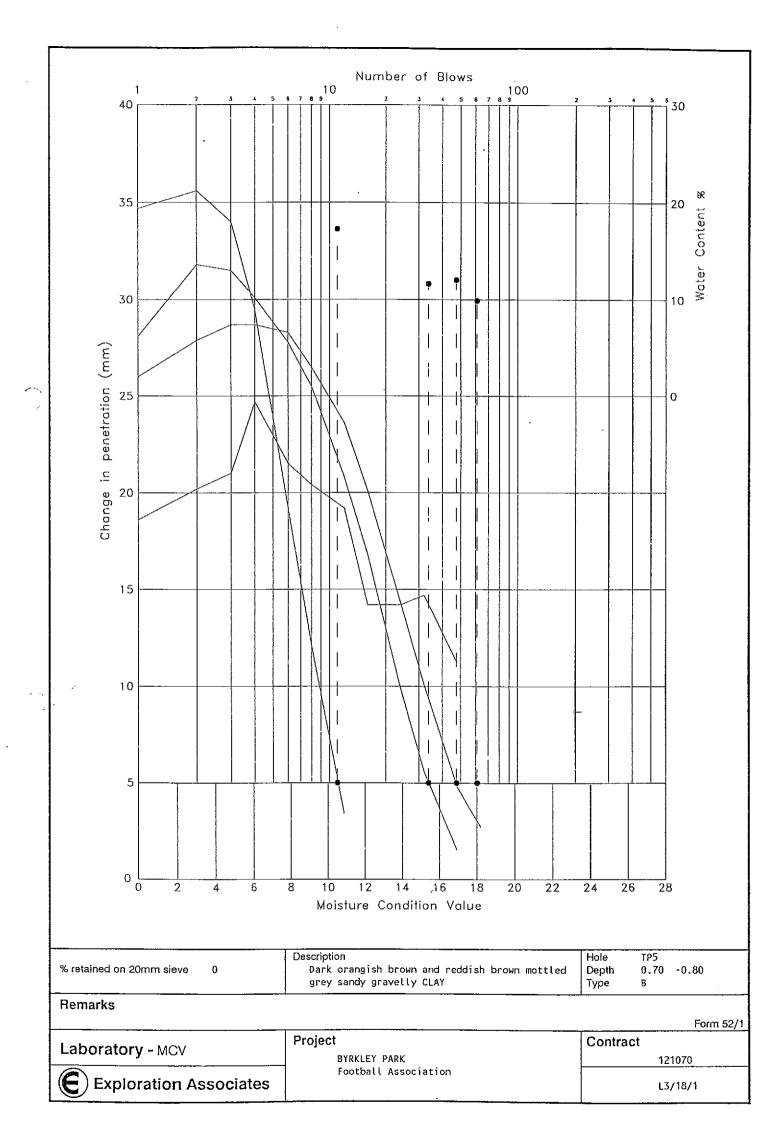


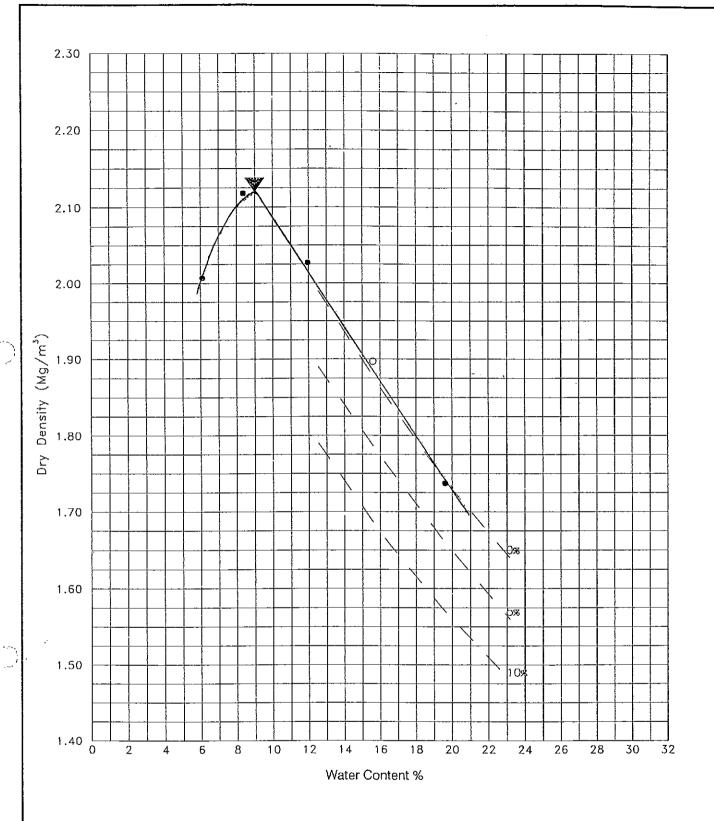
Associates
Exploration
W

_			SAMPLE DETAILS	CLASSIFICATION TESTS	SHEAR	CONSOL- IDATION	COMPACTION EARTHWORKS	CHEMICAL	OTHER
7. 0. 0.	Depth	Type No.	e Description	4425 Prep Nat Yb Test Wp 1p Water Yb Test % Mg/m Type	KPO C' C' C' KPO C' C' C' C' C' C' C' C' C' C' C' C' C'	m, c _v Type/ m²/MN m²/yr Mould	Comp Type/ CBR Water 7 _d MCV Mould % % Mg/m	SO ₃ SO ₃ (SO ₄) (S	Test Remarks and Notes
ž.	0.30 - 0.40	B B	Orange slightly gravelly sandy CLAY	89%, 425 Sieve 51 22 29 27					PSD : CL(/+)S1/SA/GR 40X/27X/26X/6X
75	0.30 - 0.40		Orange slightly gravelly sandy CLAY	- 53					
<u> </u>	08.0 - 0.80	<u> </u>	Dark orangish brown and reddish brown mottled grey sandy gravelly CLAY	76% 425 Sieve 44 23 21 14		<u> </u>	(11)		PSD : CL(/+)S1/S4/GR 28x/23x/29x/20x Ccmp/CBR %> 20nm=4.7 37.5nm=0
							Hvy 12 2.00 Hvy 10 2.00 Hvy 8.0 1.95 MCV 16 1.48 10.5		. MCV % > 20mm = 0.0
,						LE	12 1.47 12 1.46 9.6 1.53		
<u>₹</u>	0.70 - 0.80	0	Dark orangish brown and reddish brown mottled grey sandy gravelly CLAY	<u></u>		•			,
		<u>-</u>							-
Ž	NOTES			961	1	Project			Contract
	SHEAK SIKENGIH	A P	1	/Drained / with P.W.P. measurer moulded REC: Reconstituted V:	urement Dlameter In mm V: Vane SB: Shear Box (resid)	BYRKLEY PARK	ARK		121070
	CONSOLIDATION COMPACTION EARTHWORKS	DATIO TION RKS		ssumed overburden pressure octor C: CBR γ_d (max) is A: Average REL - Relations	hlp Test	Football	Football Association		Sheet L3/16

ation Associates
Explora
W

1,10 1,20		······································			 -
SAMPLE DEFALS SAMPLE DEFALS CLASSIPCATION TESTS SHEAR CONSOL CONFOCION CASTIPCATIO	OTHER		PSD : CL(/+)S1/S4/GR 30%/24%/35%/15% Ccmp/CBR %> 20mm=4.7 37.5mm=0 MCV % > 20mm = 0.0	PSD : CL(/+)S1/SA/GR 24%/34%/33%/9%	g
Depth Type	CHEMICAL	SO SO SO SO SO SO SO SO			
170 - 1.80 B Redish bran and grey slightly sandy gravelly 35 16 13 13 13 14 15 15 15 15 15 15 15	COMPACTION EARTHWORKS	CBR Water γ_d % Mg/m ³	(9.0)(2.12) (16> 1.90 20 1.74 12 2.03 8.4 2.12 6.1 2.01 12 1.47 16 1.54 11 1.46 8.8 1.48		ARK Association
1.70 - 1.80 B	CONSOL- IDATION	m _V c _V	******		Pro
SAJ Depth Type m No. 1.70 - 1.80 B Bark 1.70 - 1.80 0 Bark 3.60 - 3.80 B S11g 3.60 - 3.70 D Redd 3.60 - 3.70 D Redd SYRENGTH - CONSOLIDATION - COMPACTION - FARTHWARKS	SHEAR	ρ ρ ς 4			ent Diameter in mm one SB: Shear Box (resi
SAJ Depth Type m No. 1.70 - 1.80 B Bark 1.70 - 1.80 0 Bark 3.60 - 3.80 B S11g 3.60 - 3.70 D Redd 3.60 - 3.70 D Redd SYRENGTH - CONSOLIDATION - COMPACTION - FARTHWARKS	ICATION TESTS	Nat 7b Water 7b % Mg/m			with P.W.P. measurem: C: Reconstituted V: V: V unden pressure 7_4 (mox) sqe REL - Redationshi
SAJ Depth Type m No. 1.70 - 1.80 B Bark 1.70 - 1.80 0 Dark 3.60 - 3.80 B S11g 3.60 - 3.70 D Redd 3.60 - 3.70 D Redd SYLES SHEAR STRENGTH - CONSOLIDATION - COMPACTION - FARTHWARKS	CLASSIF	<u> </u>	83	85% — — — — — — — — — — — — — — — — — — —	heet d/Drained /\ semoulded REI assumed overb roctor C: CBR
Depth Type m No. 1.70 - 1.80 B 3.60 - 3.80 B 3.60 - 3.70 D 3.60 - 3.70 D SHEAR STRENGTH CONSOLIDATION COMPACTION COMPACTION FARTHWORKS	SAMPLE DETAILS	Description	Mark reddish brown and grey mottled slightly graveily sandy CLAY	Nark reddish brown and grey slightly sandy gravelly 2147 Slightly gravelly sandy CLAY Seddish brown sandy gravelly CLAY	
		Type No.		,	1
			1.70 - 1.80	3.60 - 3.80 3.60 - 3.70	SHEAR STRENG CONSOLIDAT COMPACTION
		H e e	冤	x x x	S S

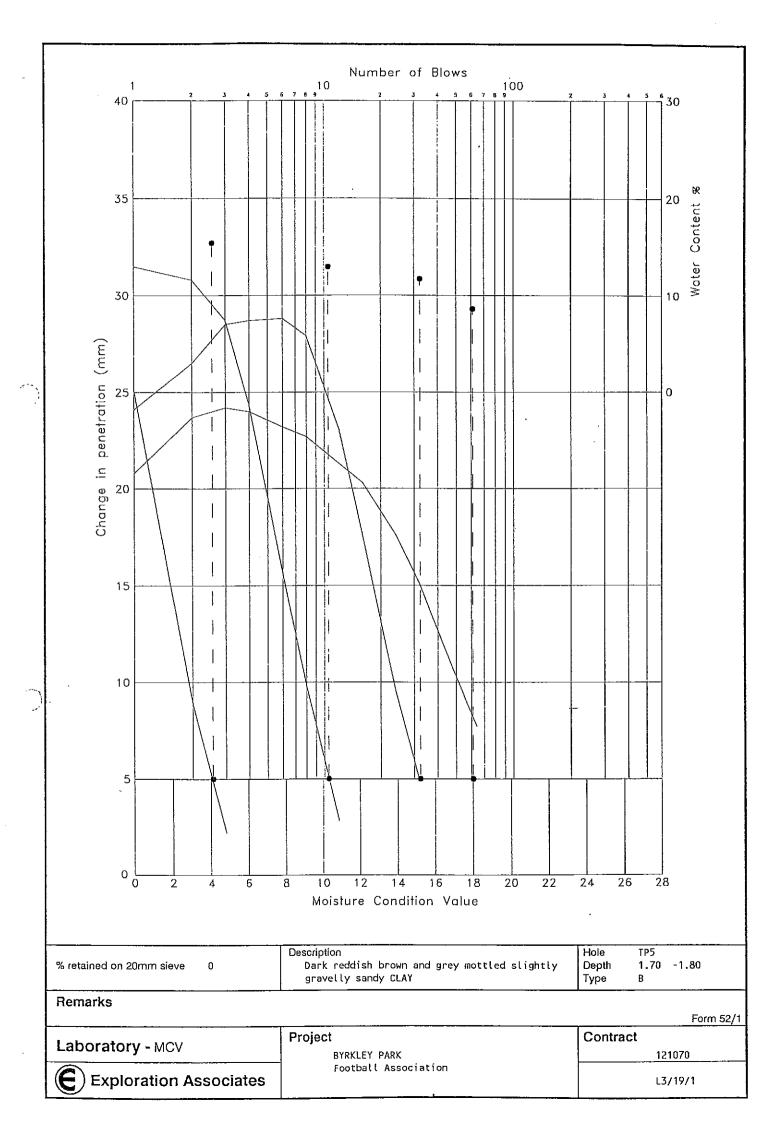



- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

Type of Test/Mould	4.5Kg/1Ltr	Description	Hole	TP5
Particle Density Assumed Maximum Dry Density Optimum Water Content % retained 37.5mm sieve	2.65 Mg/m ³ 2.01 Mg/m ³ 11 %	Dark orangish brown and reddish brown mottled grey sandy gravelly CLAY	Depth Type	0.70 -0.80
% retained 20mm sieve	5		,,,,,	Form 54/0

R	eı	n	a	r	k	s
---	----	---	---	---	---	---

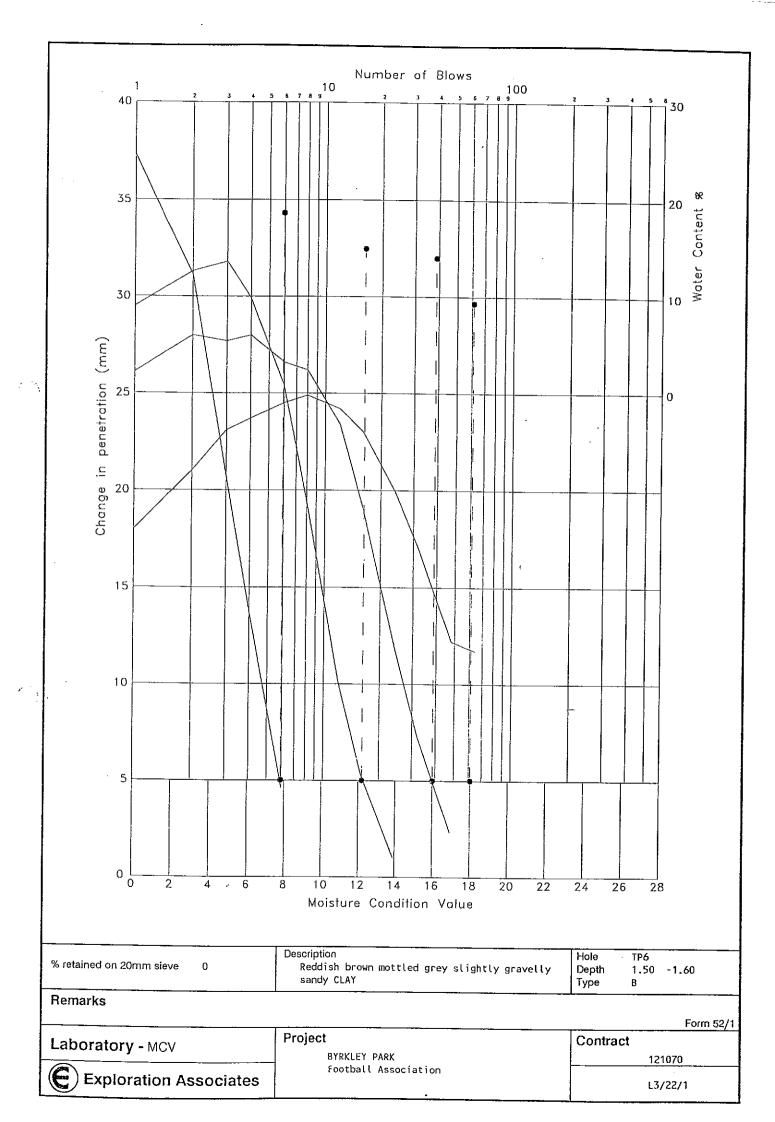
A sharetery Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/18



- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

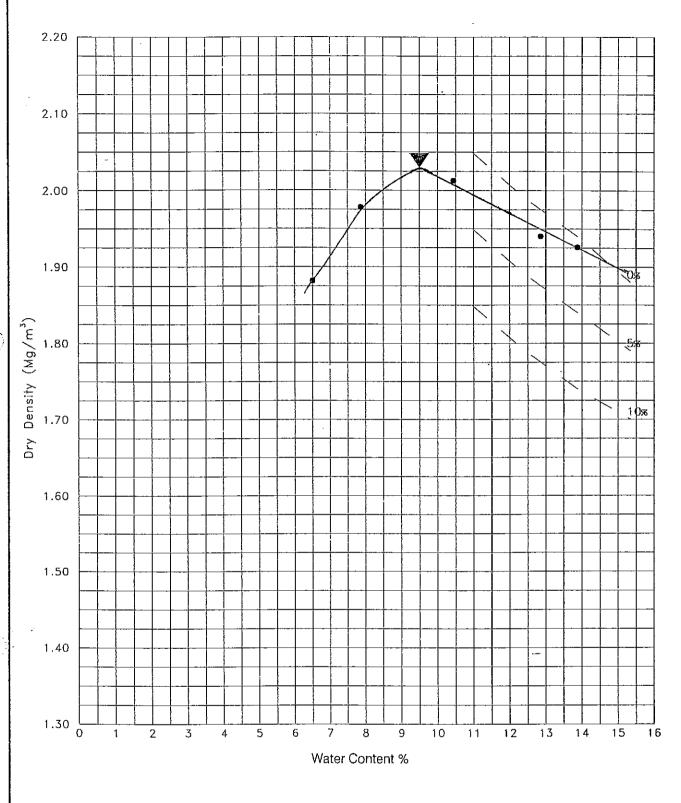
Type of Test/Mould	4.5Kg/1Ltr	Description	Hole	TP5
Particle Density Assumed	2.65 Mg/m ³			
Maximum Dry Density	2.12 Mg/m ³	Dark reddish brown and grey mottled slightly	Depth	1.70 -1.80
Optimum Water Content	9.0 %	gravelly sandy CLAY		
% retained 37.5mm sieve	0		Type	В
% retained 20mm sieve	5			Form 54/0
		·	•	

Laboratory Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/19


S
ŧ
<u>S</u> .
SSOC
S
4
jon
ij
<u>ō</u>
ď.
ú
W

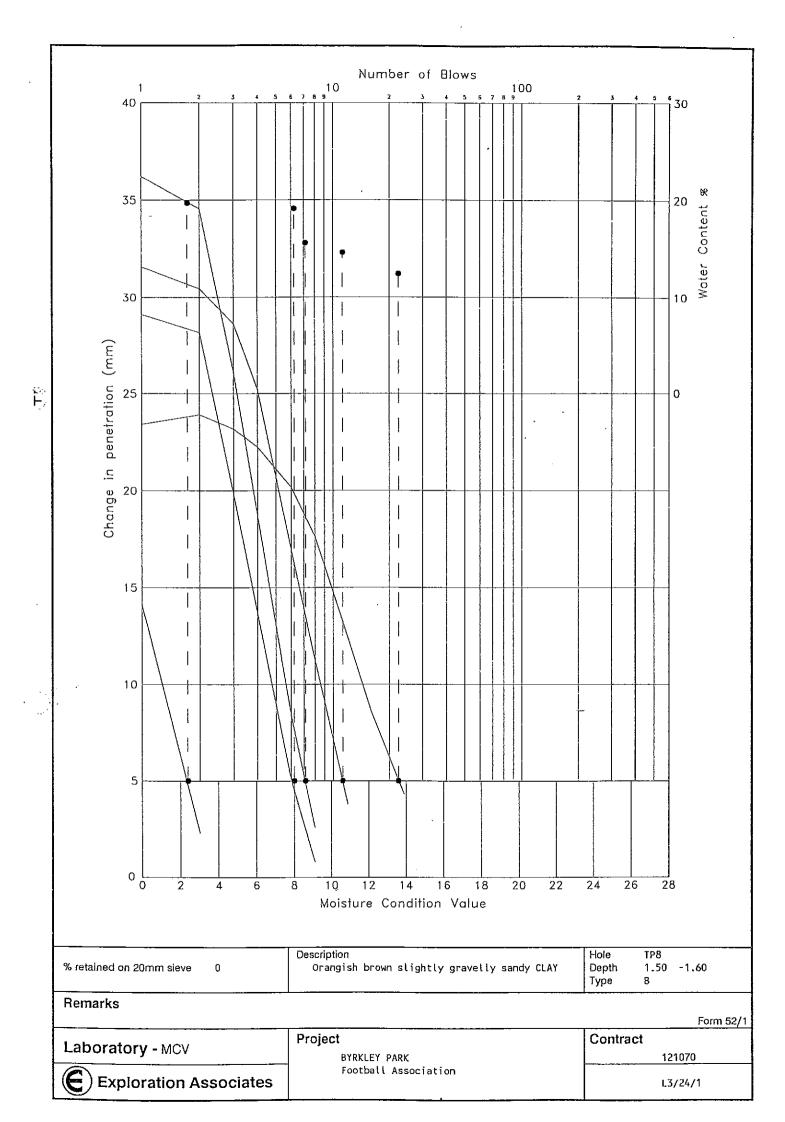
OTHER	Test Remarks and Notes	PSD : CL(/+)SI/SA/GR 38%/28%/29%/5%		PSD : CL(/+)S1/SA/GR 38A/26A/33A/3A		PSD : CL(/+)SI/SA/GR 361/271/268/116	Comp/CBR %> 20mm=2.8 37.5mm=0	rkv % > 20mm = 0.0						PSD : CL(/+)S1/SA/GR 26x/43x/27x/5x	Contract	Sheet La/20
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) PH Soil Water % 9/ltr															Form 40/4
COMPACTION EARTHWORKS	CBR Water γ_{a} MCV % % Mg/m							14 1.93	8. 5	15 1.48 12.2	4.	9.8 1.48 18.0				iation
CONSOL- IDATION	my cv Type/ m²/MN m²/yr Mould					hvH Hv4	Hvg	HVU HVU	Hvg	2 2	Ş. Ş.	MCV			Project BYRKI FY PARK	Football Association
SHEAR	r β C Ø Ø · KPc Deg.														Dlameter in mm	ane SB: Shear Box (resid)
CLASSIFICATION TESTS	Prep Nat 7, Test Wp Ip Water 7b Test % Mg/m 3 Type	425 Sleve 22 13 24	8	425 Sieve 22 17 22		425 Sieve 24 26 22			-				61	425 Sieve 16 18 17	1	and REC: Reconstituted V: Vane so to verburden pressure: CBR $\gamma_{\bf d}$ (max) Average REL - Relationship Test
J	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	/elly sandy 93%	•	CLAY 95% 39	CLAY	3velly sandy 85% 50							velly sandy	34 68%	ase see key sheet //D: Undralned/Dralnev	riaxial REM: Remoulde 100kPa above assumed Mould - P: Practor C - T: Top B: Base A:
SAMPLE DETAILS	Description	Orange and yellow mottled slightly gravelly sandy	Orange and yellow gravelly CLAY	Orange and red slightly gravelly sandy CLAY	Orange and red slightly gravelly sandy CLAY	Reddish brown mottled grey slightly gravelly sandy CLAY				,	,		Reddish brown mottled grey slightly gravelly sandy CLAY	Reddish brown slightly gravelly sandy CLAY	For full explanation of symbols please see key sheet - U/C: Unconsollated/Consollated U/D: Unarained/Drained	1; Single Stage Irlaxial M; Multistage Irlaxial REM; Remoulded REC; Reconstiture – $m_{\rm v}$ and $c_{\rm v}$ given for load increment of 100kPa above assumed overburden pressure – std: 2.5kg Hvy; 4.5kg VIb; VIbratory Mould - P; Proctor C; CBR 7 d, (max Water% (Optimum) <natural> CBR - 1; Top B; Base A; Average REL - Re</natural>
	Type No.	<u></u>	۵	æ	٥	മ							<u>a</u>	œ	©TH	ÖZ.v
	O e p t	0.30 - 0.30	0.30 - 0.30	0.60 - 0.70	0.60 - 0.70	1.50 - 1.60							1.50 - 1.60	2.40 - 2.40	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	T o o	拓	75	拓	Æ	~							<u>%</u>	7	N N	

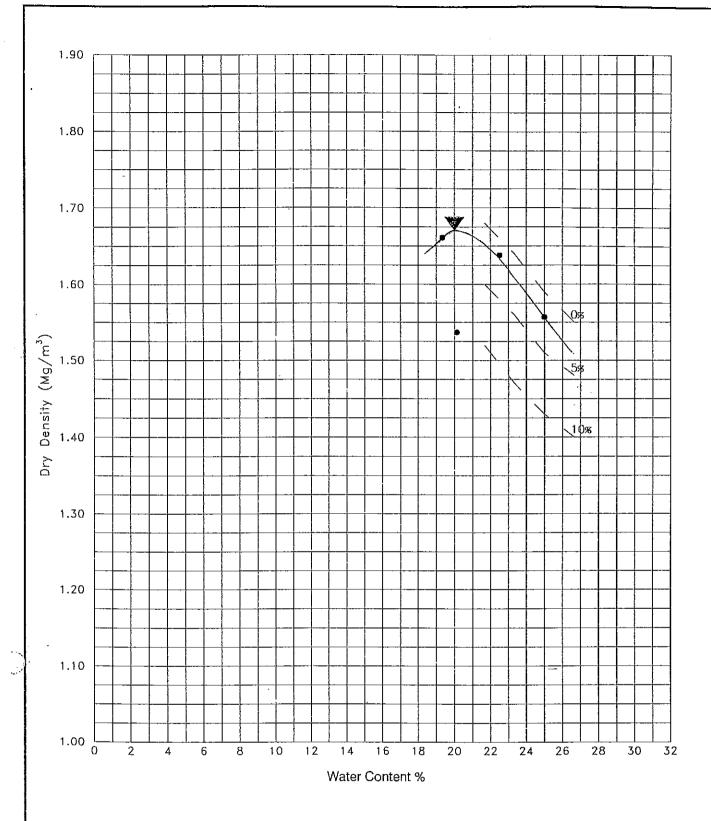
1	×	ì
	Į	


Exploration Associates

OTHER	4) er Test Remarks and Notes fr		Contract	Sheet L3/21
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) bH Soll Water %	,		Form 40/4
DL- COMPACTION N EARTHWORKS	my cv Type/ CBR Woter Yd MCV m²/MN m²/yr Mould % % Mg/m³		ject bysersy ander	Football Association
CONSOL-	8 ø ø		Prc	
SHEAR STRENGTH	Type KPa KPa			Vane SB: Shear Box (resid)
CLASSIFICATION TESTS	Nat 7 ip Water 7 b 3 % Mg/m3	4-	ith P.W.P. meosure	Reconstituted V: Vane 8 den pressure γ_{cl} (max) γ_{cl} (max) γ_{cl} REL - Relationship Test
CLASSIFIC	425 Prep WL Wp % %		sheet d/Drained / w	Remoulded REC: assumed overbur roctor C: CBR Base A: Average
SAMPLE DETAILS	Description	Reddish brown slightly gravelly sandy CLAY	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undrained/Drained A with P.W.P. measurement	
	Type No.	۵	ENGTH	SATION TION RKS
	Depth E	2.40 - 2.40	TES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	Ноіе	82.	NOTES SHE,	

es	
ciates	
Asso	
oration	
$\bar{\Xi}$	
) Ext	
W	

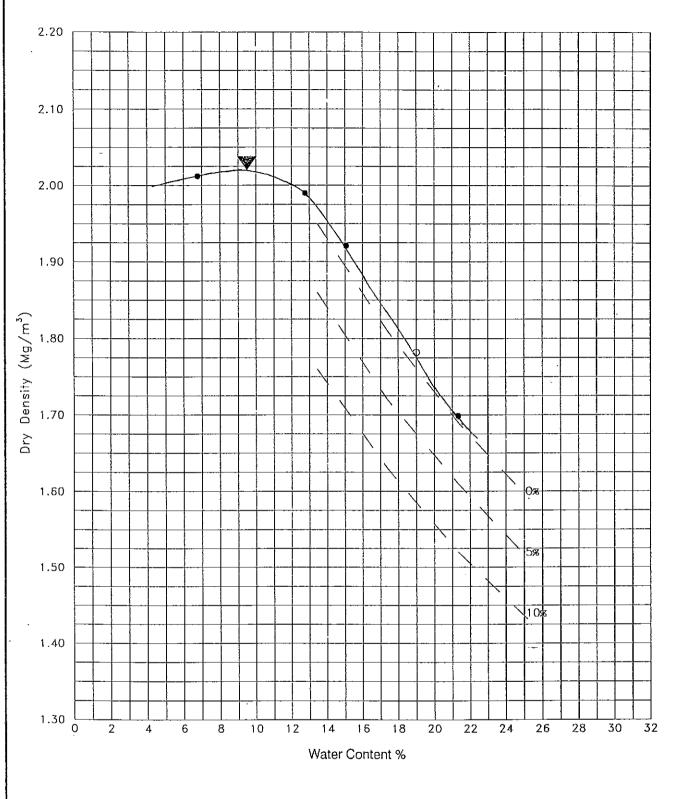

- 1									CHEAD		5			NOILOAGANOO	Z					\top
ŀ			SAMPLE DETAILS	CLA	CLASSIFICATION 1	ATION	TESTS		STRENGTH	тн	IDA1	IDATION	, ш	EARTHWORKS	VORKS		CHEMICAL	ICAL	OTHER	
	Depth n	Type No.	Description	<425 P	Prep W %		Nat Ye Water Ye Mg/m	Test Type	ρος Αροού Α	к КРо Се.	н У. т./мг	c, m ² /yr		CBR Water %	γ _{α3} Μ9/m3	MCV F	SON HQ	\$\text{SO}_3 \$\text{SO}_3\$ (\$\text{SO}_4\$) (\$\text{SO}_4\$) \$\text{SO}_1\$ Water \$\pi\$ 9/ltr	Test Remarks and Notes	
	0.50 - 0.60	<u> </u>	Dark orangish brown mottled grey slightly gravelly siightly sandy CLAY	91% 42	425 Sieve 24 30	- κ ₂													PSD : CL(/+)S1/SA/GR 47x/29x/18x/6x	
	09.0 - 05.0	0	Dark orangish brown mottled grey gravelly CLAY			21														
	1.50 - 1.60		Orangish brown slightly gravelly sandy CLAY	78% 45	425 Sieve 23 17	. e .		E.	05	299			Hvy	(9.5)	(9.5)(2.03)				PSD : CL(/+)S1/S4/GR	
										761			F A	€ 9				•	Ccnp/CBR X > 20mm=2.6 37.5mm=0	
									20 20	88 9			Hvy :	Ξ Ξ					MCV % > 20mm = 0.0	
								 5	55 				Evit Evit	4 4			-			
								•		 ·			 	- 6	1.79	8.0				
													A PC	22 12	9-1-99	13.6			_	
									• • •			<u></u>	NO.	2 8	1.73	2.4				
														9	8	9.8			-	
<u>-</u> -	1.50 - 1.60	٥	Grangish brown slightly gravelly sandy CLAY						.											
2.8	3.00	œ	Grey slightly sandy CLAY	99% 42	425 Sieve 33 21	- π 							=						PSD : CL(/+)SI/SA/GR 48x/46x/5x/0x	
%	2.90 - 3.00	٥	Dark red slightly sandy gravelły CLAY			32										····				
- NOTES			For full avolunation of symbols plans see bay sheet								2		_			\dashv				
걊	SHEAR STRENGTH	NG1H		Drained Doulded	A WITH	n P.W.P. econstif	A with P.W.P. measurement REC: Reconstituted V: Vane	nent D	fameter l 3: Shear	Diameter in mm SB: Shear Box (resid)) i i	JEC. BYRKLEY PARK	ARK					-	Contract 121070	
ŭŭä	CONSOLIDATION COMPACTION EARTHWORKS	ATION SX NO NO NO NO NO NO NO NO NO NO NO NO NO	1 1	sumed or stor C: se A: Av	rerburde CBR reroge	γ (π γ (π REL -	essure (max) Relationship Test	alp Test				ootball	Football Association	t ion			S	200	Sheet L3/23	
																	2	4/04		_



- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

Type of Test/Mould Particle Density Assumed	4.5Kg/1Ltr 2.65 Mg/m ³	Description	Hole	TP8
Maximum Dry Density Optimum Water Content	2.03 Mg/m ³	Orangish brown slightly gravelly sandy CLAY	Depth	1.50 -1.60
% retained 37.5mm sieve	9.5 % 0		Type	8
% retained 20mm sieve	3		<u> </u>	Form 54/0

Laboratory Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/24

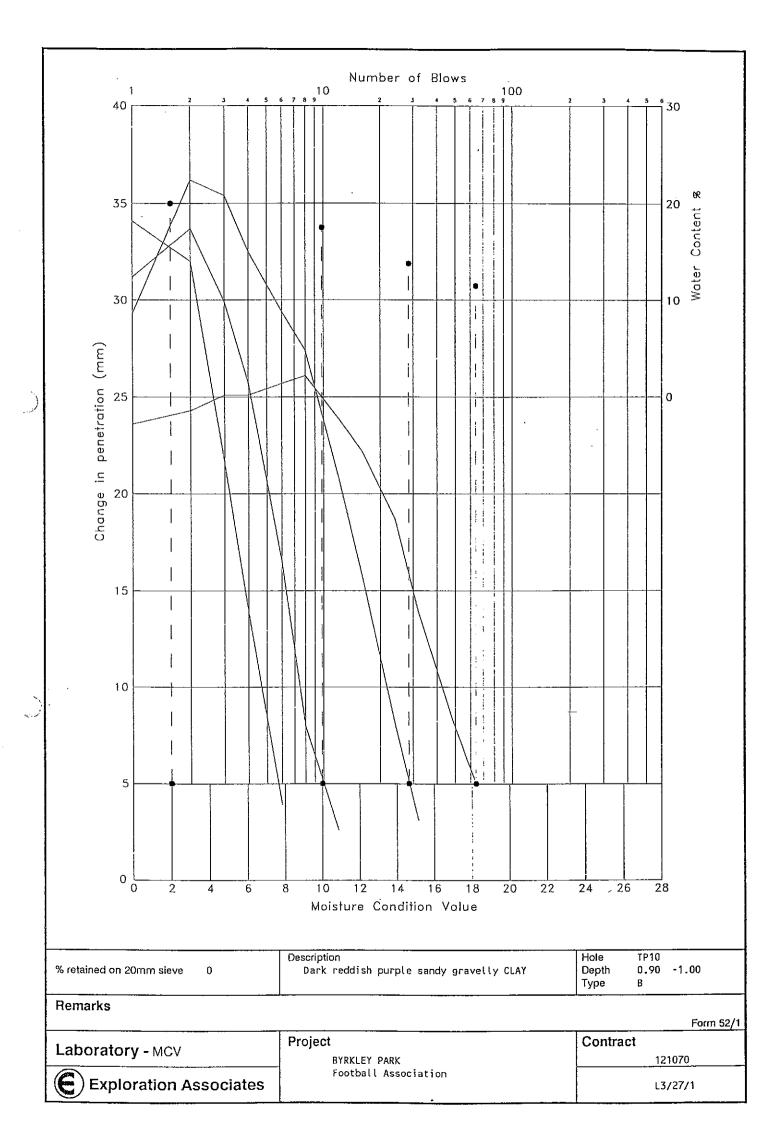


- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

Type of Test/Mould Particle Density Assumed	2.5Kg/1Ltr	Description	Hole	TP10
Maximum Dry Density	2.65 Mg/m ³ 1.67 Mg/m ³		Depth	0.40 -0.50
Optimum Water Content % retained 37.5mm sieve	20 % 0	slightly gravelly CLAY	Type	В
% retained 20mm sieve	0			Form 54/0

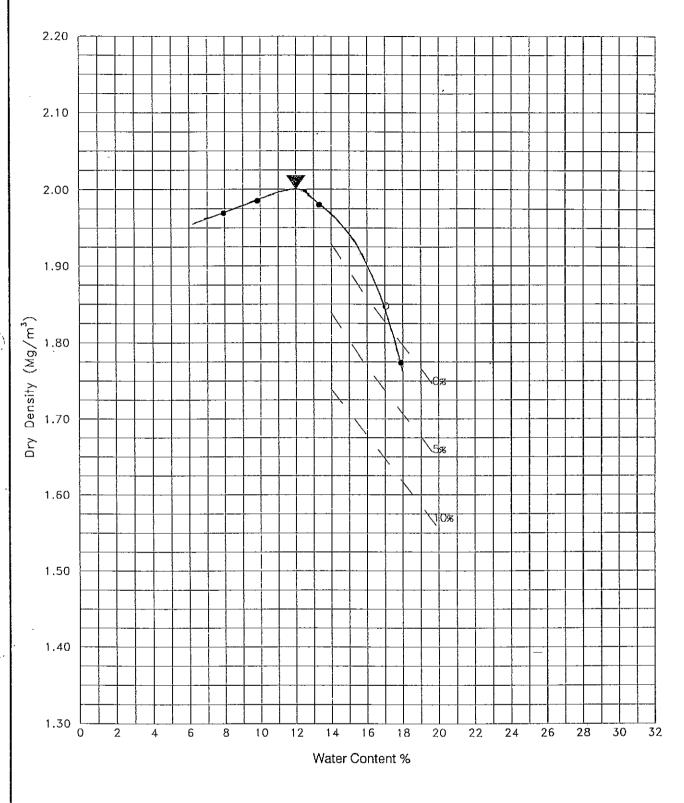
Remarks

Laboratami Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/26



- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

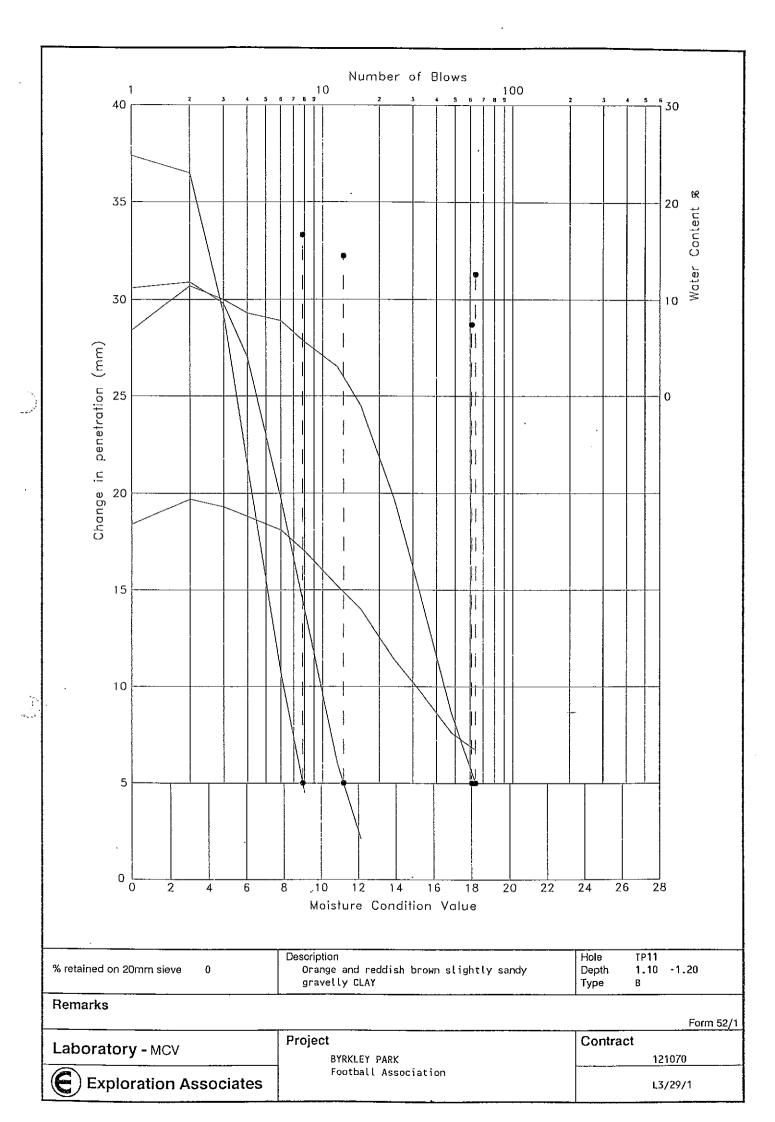
Type of Test/Mould	4.5Kg/CBR	Description	Hole	TP10
Particle Density Assumed Maximum Dry Density	2.65 Mg/m ³ 2.02 Mg/m ³	Dark reddish purple sandy gravelly CLAY	Depth	0.90 -1.00
Optimum Water Content	9.5 %	, , , , - , ,		_
% retained 37.5mm sieve % retained 20mm sieve	0 7		Туре	8 Form 54/0


R	en	ıar	ks
---	----	-----	----

Laboratory Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	SYRKLEY PARK	121070
Exploration Associates	Football Association	L3/27

Associates
ration
lora
Exp

OTHER	Test Remarks and Notes	Conp/CBR K > 20mm=2.4 37.5mm=0 КСV K > 20mm = 0.0	Contract 121070	Sheet L3/28
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) pH Soll Water % g/ltr			Form 40/4
COMPACTION EARTHWORKS	Cy Type/ CBR Water γ_d MCV m_{2}^{γ} / Mould % % Mg/m	Hvy (12) (2.00) Hvy (17) 1.85 Hvy 13 1.98 Hvy 7.9 1.97 Hvy 7.9 1.97 Hvy 7.9 1.97 Hvy 7.9 1.97 Hvy 7.9 1.97 Hvy 7.9 1.97 Hvy 7.3 1.68 18.0	Y PARK	Football Association
CONSOL- IDATION	E ² t VM/		Project BYRKLEY PARK	
SHEAR STRENGTH	7 ₃ С Ø Test _{σ, р} С Ø′ Type кРа КРа Deg.		nent Dlameter In mm Vane SB: Shear Box (resid)	
CLASSIFICATION TESTS	425 Prep Nat 7 WL Wp 1p Water 7 B % Mg/m		et younged REC: Reconstituted V: Vane	iumed overburden pressure stor C: CBR
SAMPLE DETAILS	Description	Orange and reddish brown slightly sandy graveily	For full explanation of symbols please see key sheet "U/C: Unconsolidated/Consolidated U/D: Undrained/Drained T: Sincia Stone Trioxia! M: Multistoce Trioxia! Remulded	. my and cognitive for the many of 100kPa doors assumed overburden pressure stat. 2.5kg Hvy: 4.5kg VIb: Vibratory Mould - P. Proctor C: CBR γ_d (max) Water% (Optimum) and turb CBR - T: Top B: Base A: Average REL - Relative Processing Mould - P. Proctor C: CBR γ_d (max)
	No No			
	Depth n	1.10 - 1.20	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
<u> </u>	H 0 0	÷ .	ž	

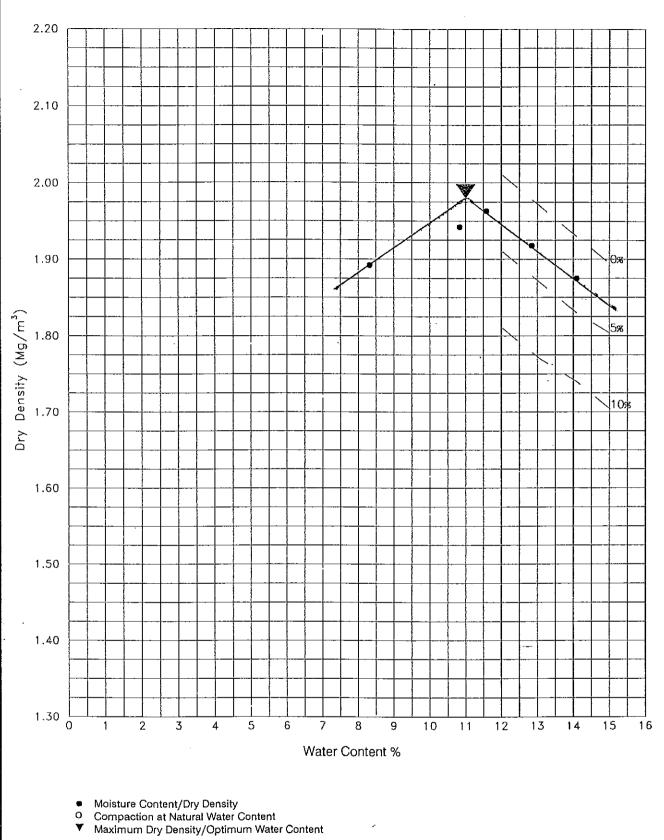


- Moisture Content/Dry Density
- Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

Domorko					
% retained 20mm sieve	2		1		Form 54/0
% retained 37.5mm sieve	0		Туре	8	ļ
Optimum Water Content	12 %	gravelly CLAY	1		
Maximum Dry Density	2.00 Mg/m ³	Orange and reddish brown slightly sandy	Depth	1.10	-1.20
Particle Density Assumed	2.65 Mg/m ³				- 1
Type of Test/Mould	4.5Kg/1Ltr	Description	Hole	TP11	1

Rem	ar	ks
-----	----	----

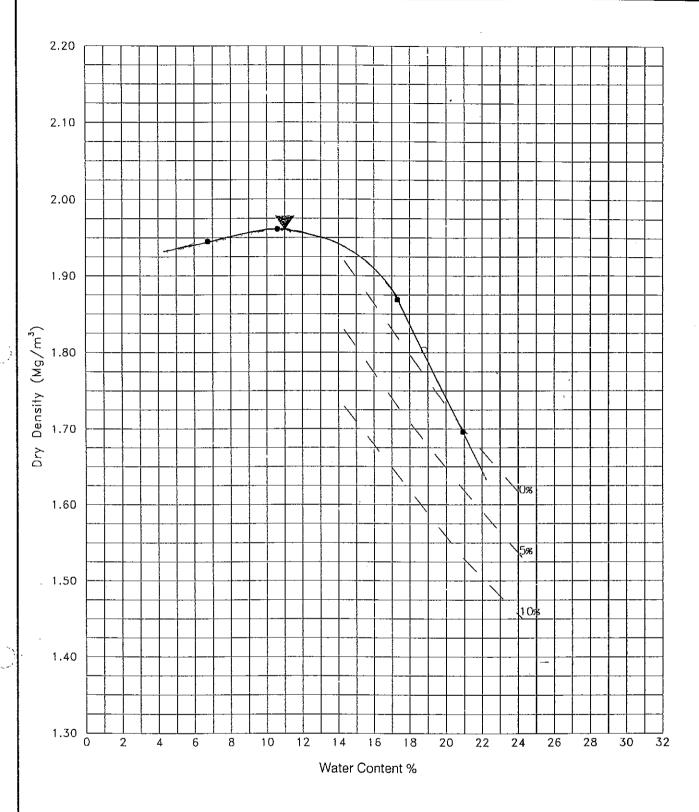
Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship		121070
Exploration Associates	Football Association	L3/29


Associates
Exploration
$\mathbf{\bar{\omega}}$

OTHER	r Test Remarks and Notes	PSD : CL(/+)S1/SA/GR 18X/13Y/26X/43X Ccnp/CBR X> 20mm=2.9 37.5mm=0 PSD : CL(/+)S1/SA/GR 14X/10X/20X/56X Conp/CBR X> 20mm=24.637.5mm=6 MCV X > 20mm = 0.0		Contract 121070 Sheet L3/30
CHEMICAL	SO ₃ SO ₃ SO ₃ SO ₄ (SO ₄) (SO ₄)	·		Form 40/4
COMPACTION EARTHWORKS	Comp Type/ CBR Water γ_d MCV Mould % % Mg/m	(11) (8.3 13 14 12 12 12 12 12 13 14 12 12 13 13 14 15 15 15 15 15 15 15	MCV 13 1.48 12.2 MCV 9.5 1.58 18.0	ject BYRKLEY PARK Football Association
CONSOL- IDATION	m, c, n ² /MN m ² /yr			Project BYRKLEY PARK Football Ass
SHEAR STRENGTH	Type kPa kPa Deg.	REM 50 77 REM 50 53 REM 50 92		ent Diameter in mm ane SB: Shear Box (resta) p Test
CLASSIFICATION TESTS	425 Prep Nat Y _b W _L W _p Ip Water Y _b % Mg/m ³	52% 425 Sieve 13 22 17 13 18 18 18 18 18 18 18 18 18 18 18 18 18	24	et roched Λ with P.W.P. measurement coulded REC: Reconstituted V: Vane Sumed overburden pressure for C: CBR γ_d (max) e A: Average REL - Relationship Test
SAMPLE DETAILS	Description	Orangish brown mottled grey sandy gravelly CLAY Orangish brown slightly gravelly sandy CLAY Reddish brown slightly gravelly sandy CLAY Orange and grey slightly sandy very gravelly CLAY	Light orangish grey clayey sandy GRAVEL.	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undrained/Drained A with P.W.P. me T: Single Stoge Triaxial M: Multistage Triaxial REM: Remoulated REC: Reconstitute - m _y and c _y gilven for load increment of 100kPa above assumed overburden pressure - std: 2.5kg Hvy: 4.5kg Vib: Vibratory Mould - P: Practor C: CBR \(\frac{7}{A} \) (max) - Water% (Optimum) < Natural> CBR - T: Top B: Base A: Average REL - Rel
	Depth Type m No.	TP12 0.40 - 0.50 B TP12 0.40 - 0.50 D TP12 1.40 - 1.50 D	TP12 1.80 ~ 1.90 0	NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS

rati
oldx
Û.
W)

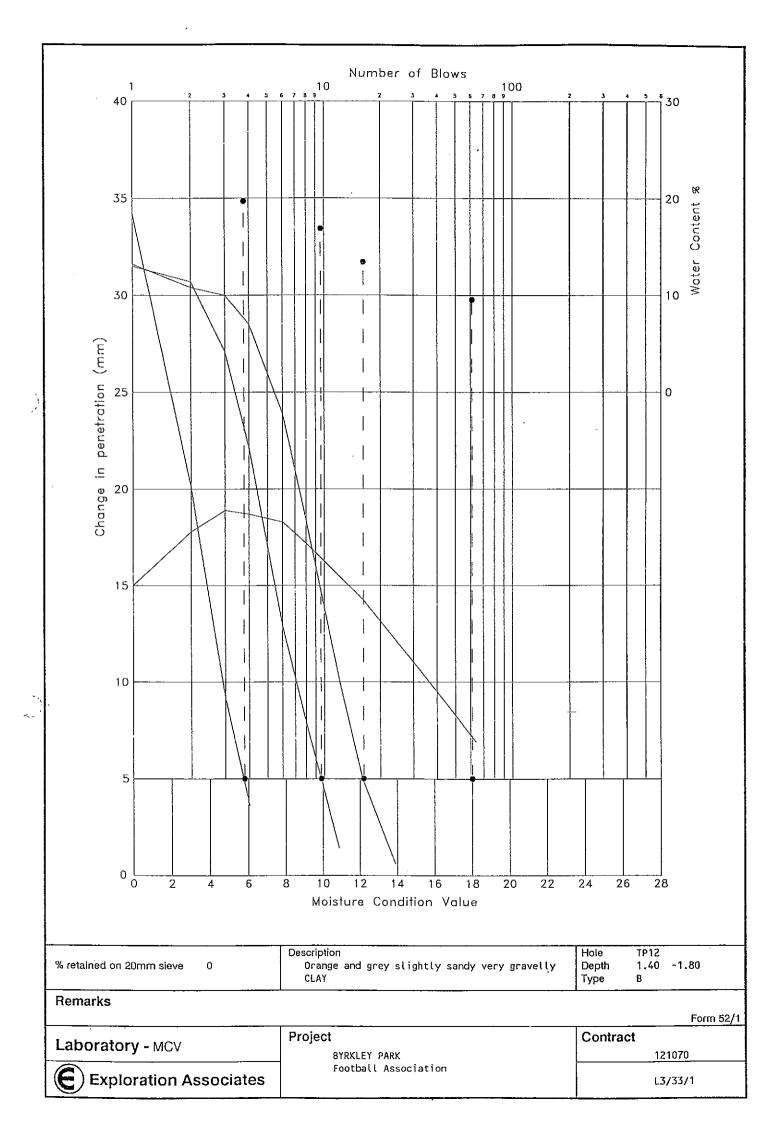
xploration Associates


OTHER	Test Remarks and Notes	PSD : CL(/+)SI/SA/GR 14%/15%/11%/60%		PSD : CL(/+)S1/SA/GR 30X/33%/26X/11X		Contract	12,1070	Sheet L3/31
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) (SO ₄) (SO ₄) (SO ₄)			,				Form 40/4
COMPACTION EARTHWORKS	Comp. Type/ CBR Water $^{\gamma}_{d}$ MCV Mould % % Mg/m						PARK	Football Association
CONSOL- IDATION	m, c, n²/MN m²/yr				•	Project		
SHEAR STRENGTH	Type KPo Deg.						nt Diameter in mm ne SB: Shear Box (resid)) Test
ON TESTS	Nat Water Yb 1.	13	78	91			W.P. measureme onstituted V: Va	xessure (mox) EL - Relationship
CLASSIFICATION TESTS	W W D	425 Sieve 29 20		425 Sieve 21 25			A with P.' REC: Reck	overburden p CBR 7 _d Average R
7 —	~425 WL %	33% 4		% 2		heet	a/Drained ?emouldec	assumed (roctor C: Sase A: /
SAMPLE DETAILS	Description	Light orangish grey clayey sandy GRAVEL	Reddish brown slightly gravelly sandy CLAY	Reddish brown slightly gravelly sandy CLAY				t 1
	, No.	m	۵	æ			NGTH	NON SX NON SX
	Depth	1.80 - 2.00	3.00 - 3.10	3.00 - 3.10		NOTES	SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	H 0 6	1912	TP12	TP12	•	S S		

Particle Density Assumed 2.65 Mg/m ³ Maximum Dry Density 1.98 Mg/m ³ Optimum Water Content 11 % CLAY Type B	Type of Test/Mould	2.5Kg/1Ltr	Description	Hole	TP12
1 type 8	Maximum Dry Density Optimum Water Content	1.98 Mg/m ³		- '	0.40 -0.50
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	3		туре	5 Form 54/0

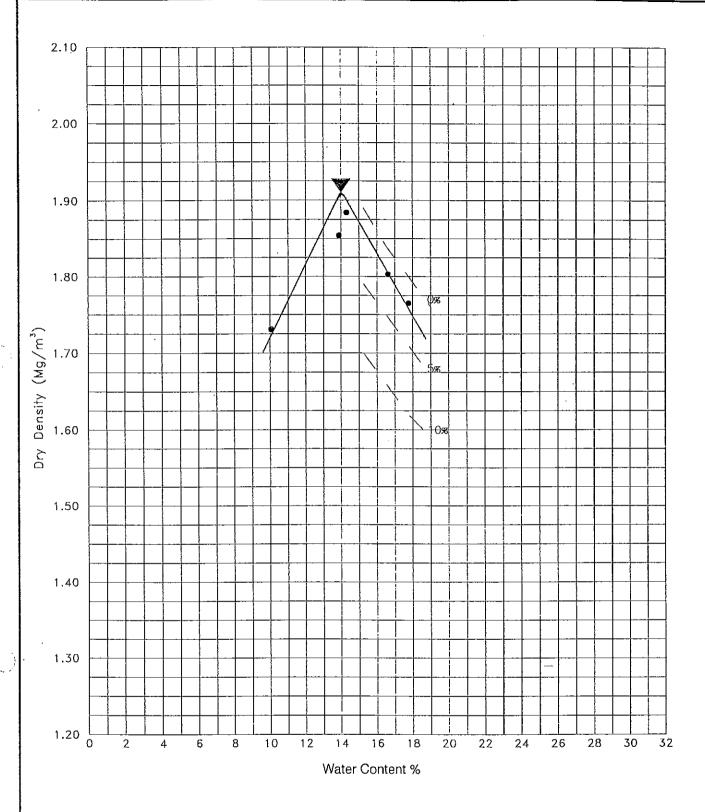
R	e	П	าล	r	k	s
---	---	---	----	---	---	---

Laboratory Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/32



- Moisture Content/Dry Density Compaction at Natural Water Content Maximum Dry Density/Optimum Water Content

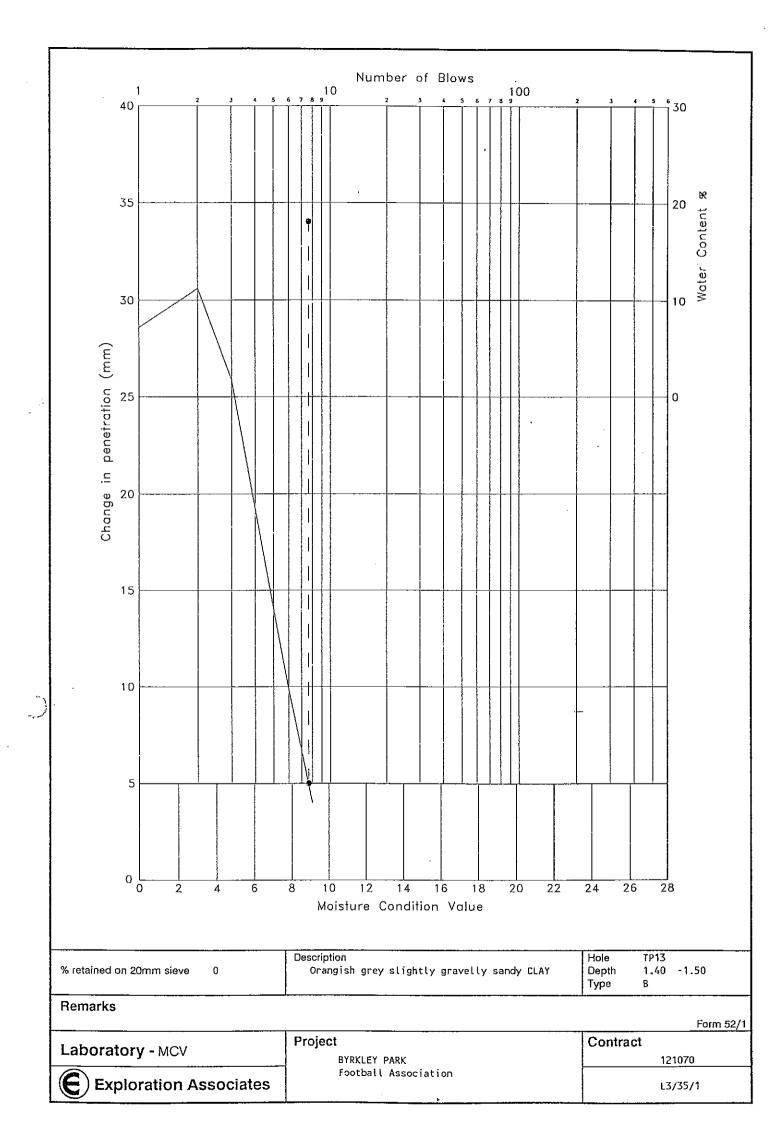
Pomorko			<u> </u>		'']
% retained 20mm sieve	25		1	Form 54	1/0
% retained 37.5mm sieve	6		Type	В	ı
Optimum Water Content	11 %	CLAY	1		ı
Maximum Dry Density	1.96 Mg/m ³	Orange and grey slightly sandy very gravelly	Depth	1.40 -1.80	
Particle Density Assumed	2.65 Mg/m ³		İ		
Type of Test/Mould	4.5Kg/CBR	Description	Hole	TP12	


Hemarks	3
---------	---

Laboroteri	Moisture Content/	Project	 Contract
Laboratory -	Dry Density Relationship	BYRKLEY PARK	121070
	oration Associates	Football Association	L3/33

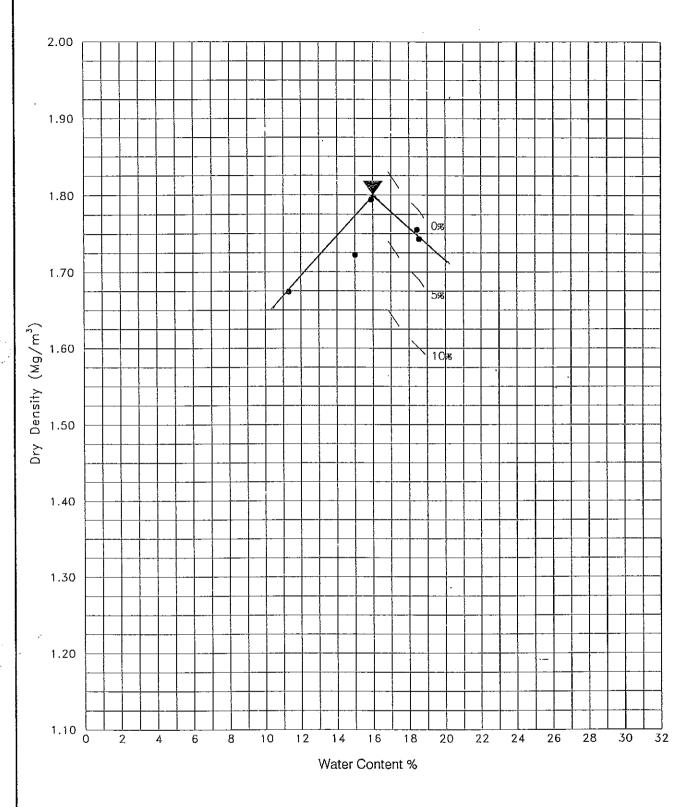
l Associates
ion
orat
xplc
) H
W)

···									
OTHER	Test Remarks and Notes	PSD : CL(/+)S1/SA/6R 20x/6 IX/15x/4x		PSD : CL(/+)S1/SA/GR 27%/35%/28%/10% Comp/CBR %> 20mm=2.6 37.5mm=0 MCV % > 20mm = 0.0			PSD : CL(/+)S1/SA/GR 21K/37K/27R/16K		Contract 121070 Sheet L3/34
CHEMICAL	SO ₃ SO ₃ (SO ₄) BDH Soll Woter % G/Irr			,					Form 40/4
COMPACTION				(14)	Std 17 1.80 Std 18 1.77 HCV 18 1.85 8.9				Jject BYRKLEY PARK Football Association
CONSOL- IDATION	my cv m²/min m²/yr			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	ж ж <u>¥</u>			-	Pro
SHEAR	Test on po C Ø Type kPa NPa Deg.			20 20	REM 50 47				ent Diameter in mm ane SB: Shear Box (resid)
CLASSIFICATION TESTS	Prep Nat Y _b % Mg/m	425 Sieve 23 23 24	72	425 Sieve 20 19 15		S1	425 Sieve 19 15 11	0	d A with P.W.P. measurement C ear REC: Reconstituted V: Vane S Loverburden pressure S: CBiR Yd (mox) Average REL - Relationship Test
ਰ	<425 W L %	11y 94%		39			ve!ly 80%	मून मु	ease see key sheet U/D: Undrained/Drained 1 flookla REM: Remoulded 1 lookla assumed 1 lookla bove assume 1 M Mould - P: Proctor C: R - I: Top B: Base A: A
SAMPLE DETAILS	Description	Orange and grey slightly sandy slightly gravelly CLAY	Orangish grey gravelly CLAY	Orangish grey slightly gravelly sandy CLAY		Grangish grey slightly gravelly sandy CLAY	Dark purplish brown mottled grey slightly gravelly sandy CLAY	Dark purplish brown mottled grey slightly gravelly sandy CLAY	For full explanation of symbols pi "U/C: Unconsolidated/Consolidated I: Single Stage Trioxial M: Multistage "m _y and c _y given for load increment "Stat: 2.5kg Hvy: 4.5kg Vib: Vibrant Woter% (Optimum) <naturals cb<="" td=""></naturals>
	Type No.	<u>8</u>				٥	<u> </u>	۵	0 5 2 W
	Depth m	3 0.30 - 0.50	3 0.30 - 0.50	3 1.40 - 1.50		3 1.40 - 1.70	3 2.60 - 2.80	3 2.60 - 2.70	NOTES SHEAR STRENGTH CONSOLIDATION COMPACTION EARTHWORKS
	д ө	TP13	TP13	TP 13		TP13	TPI3	TP.	



- Moisture Content/Dry Density
 Compaction at Natural Water Content
 ▼ Maximum Dry Density/Optimum Water Content

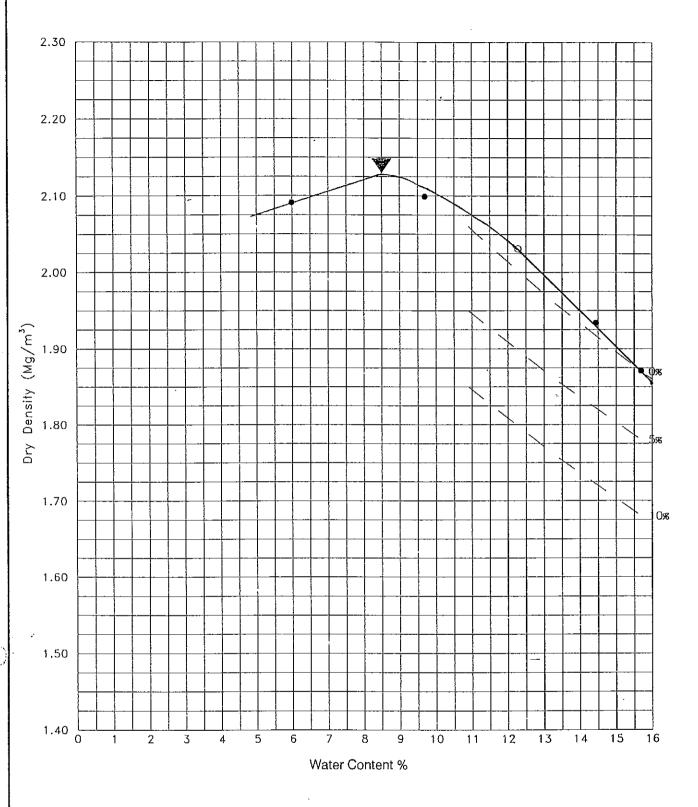
Barrier I i				
% retained 20mm sieve	3			Form 54/0
% retained 37.5mm sieve	0		Туре	В
Optimum Water Content	14 %			
Maximum Dry Density	1.91 Mg/m ³	Orangish grey slightly gravelly sandy CLAY	Depth	1.40 -1.50
Particle Density Assumed	2.65 Mg/m ³			
Type of Test/Mould	2.5Kg/1Ltr	Description	Hole	TP13


Remarks

Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/35

Associates
Exploration
W

OTHER	Test Remarks and Notes	PSD : CL(/+)S1/SA/GR 26x/35x/27x/11x Comp/CBR x > 20mm=0 37.5mm=0 HCV x > 20mm = 0.0	Contract	Sheet L3/36
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) pH Soll Water % g/ltr			Form 40/4
COMPACTION EARTHWORKS	Comp Type/ CBR Water 7 _d MCV Mould % % Mg/m	Std (16) (1.80) Std 11 1.67 Std 15 1.72 Std 16 1.79 Std 19 1.74 Std 19 1.74 Hvy (8.5)(2.13) Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 2.03 Hvy (12) 1.74 Hvy (8.5)(2.13) Hvy (12) 2.03 Hvy (12) 1.74 Hvy (8.5)(2.13) Hvy (12) 2.03 Hvy (12) 1.74 Hvy (8.5)(2.13) Hvy (12) 1.75 Hvy (13) 1.75 Hvy (14) 1.75	XXX	Football Association
CONSOL- IDATION	m, cv m²/MN m²/yr		Project BYRKI FY PARK	
SHEAR STRENGTH	Test on Po C	REM 50 197 REM 50 75 REM 50 93	ant Dlameter in mm	2.7
CLASSIFICATION TESTS	425 Prep Nat 7 Nat Wp Ip Water 7 Nat % Mg/m 1	83% 425 Sieve 52 17 35 19	et rained A with P.W.P. measurement	noulded REC: Reconstituted V: Vane $^\circ$ urned overburden pressure for C: CBR $^\circ$ $^\circ$ (max) $^\circ$ A Average REL - Relationship Test
SAMPLE DETAILS	Description	Dark reddish brown mottled grey slightly sandy gravelly CLAY Dark reddish brown slightly sandy gravelly CLAY	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undrained/Drained	
	Depth Type	0.90 - 1.00 B 4.00 - 4.20 B	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	H O F	TP14	Ž	

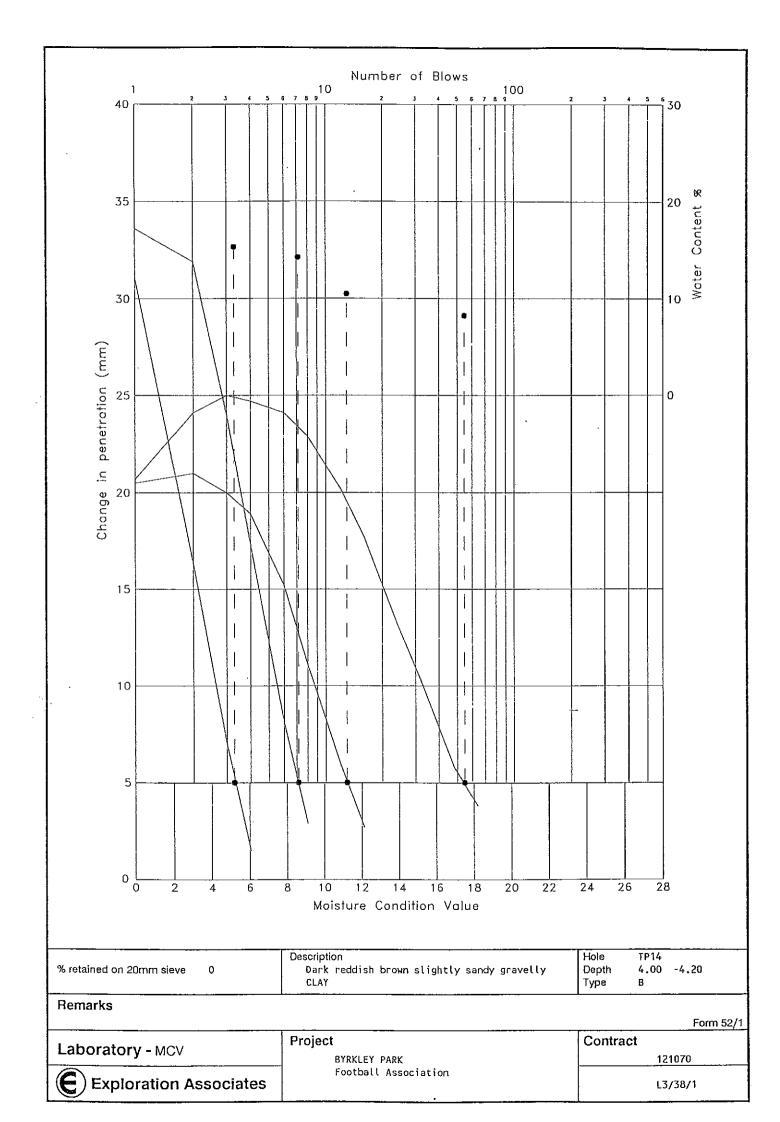


- Moisture Content/Dry Density
 Compaction at Natural Water Content
 ▼ Maximum Dry Density/Optimum Water Content

Domostes					
% retained 20mm sieve	0				Form 54/0
% retained 37.5mm sieve	0		Туре	8	
Optimum Water Content	16 %	sandy gravelly CLAY	i		
Maximum Dry Density	1.80 Mg/m ³	Dark reddish brown mottled grey slightly	Depth	0.90 -	1.00
Particle Density Assumed	2.65 Mg/m ³		ł		
Type of Test/Mould	2.5Kg/1Ltr	Description	Hole	TP14	

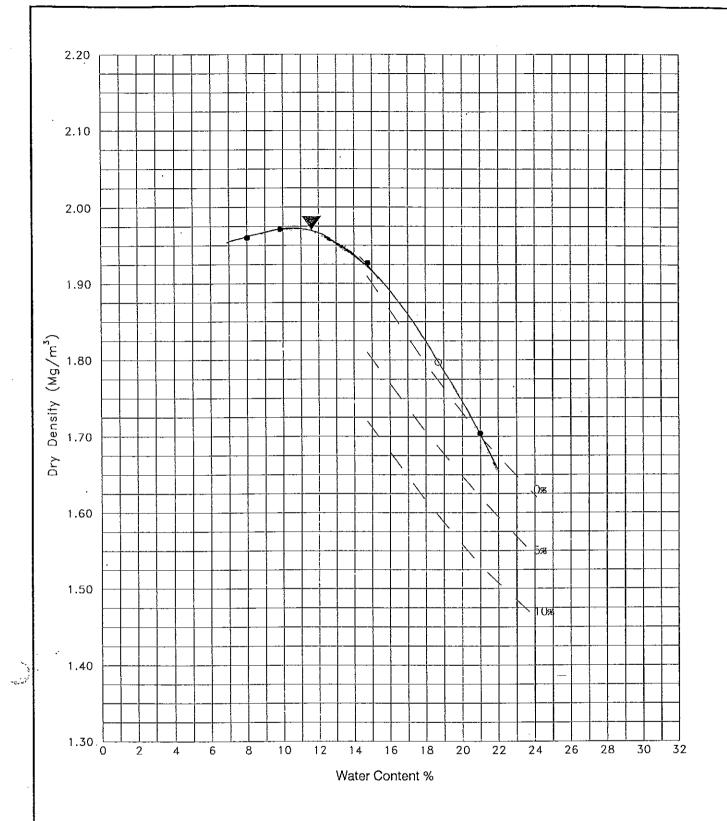
Remarks	ì
---------	---

	Moisture Content/	Project	Contract
Laboratory -	Dry Density Relationship	BYRKLEY PARK	121070
	oration Associates	Football Association	L3/37



- Moisture Content/Dry Density
- Compaction at Natural Water Content
 ▼ Maximum Dry Density/Optimum Water Content

Type of Test/Mould	4.5Kg/CBR	Description	Hole	TP14	1
Particle Density Assumed Maximum Dry Density Optimum Water Content	2.65 Mg/m ³ 2.13 Mg/m ³ 8.5 %		Depth	4.00	-4.20
% retained 37.5mm sieve	8		Туре	В	
% retained 20mm sieve	6				Form 54/0
		·			

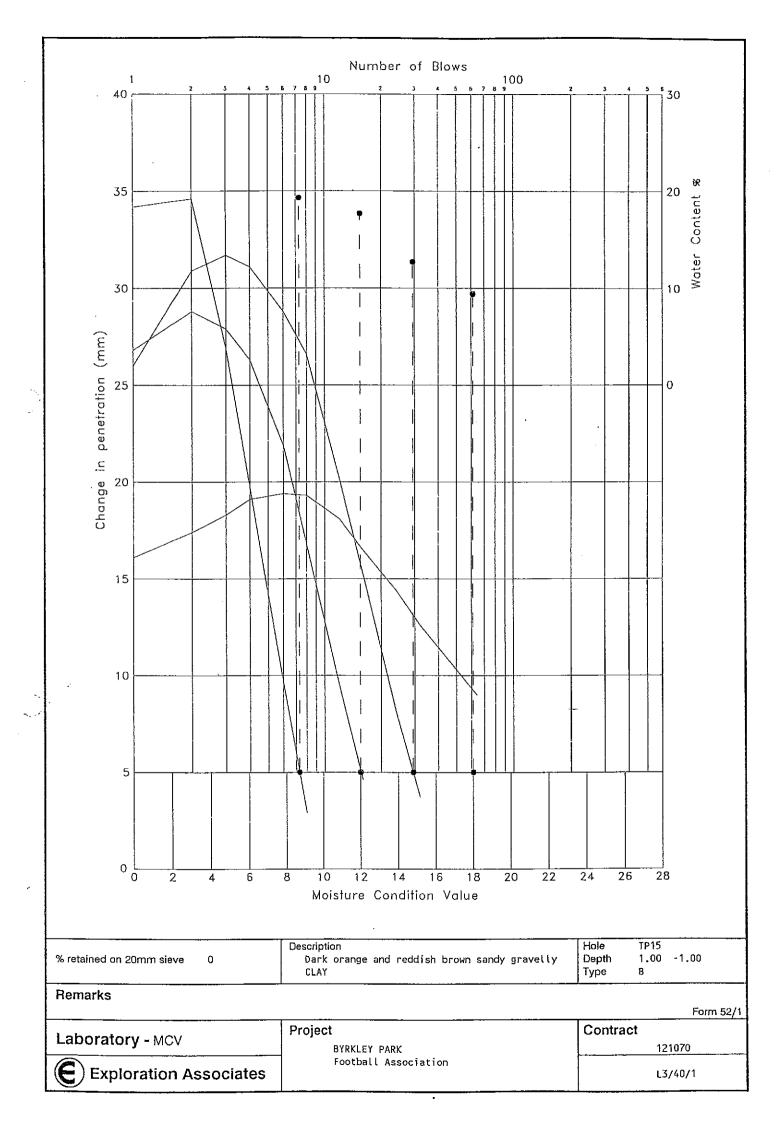

H	e	n	lê	r	k	S
---	---	---	----	---	---	---

Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/38

(C)
\ssociates
¥
ŏ
Ö
9
2
드
ratio

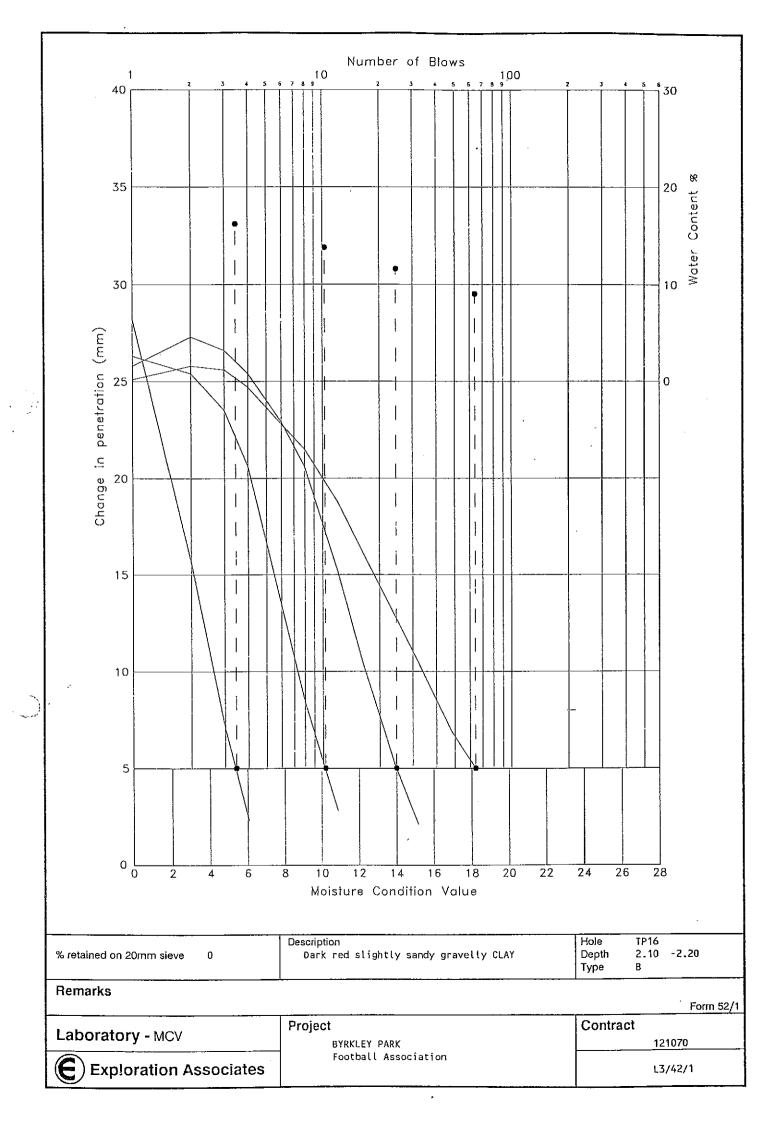
70
0
$\overline{}$
≍
ш
$\overline{}$
•••

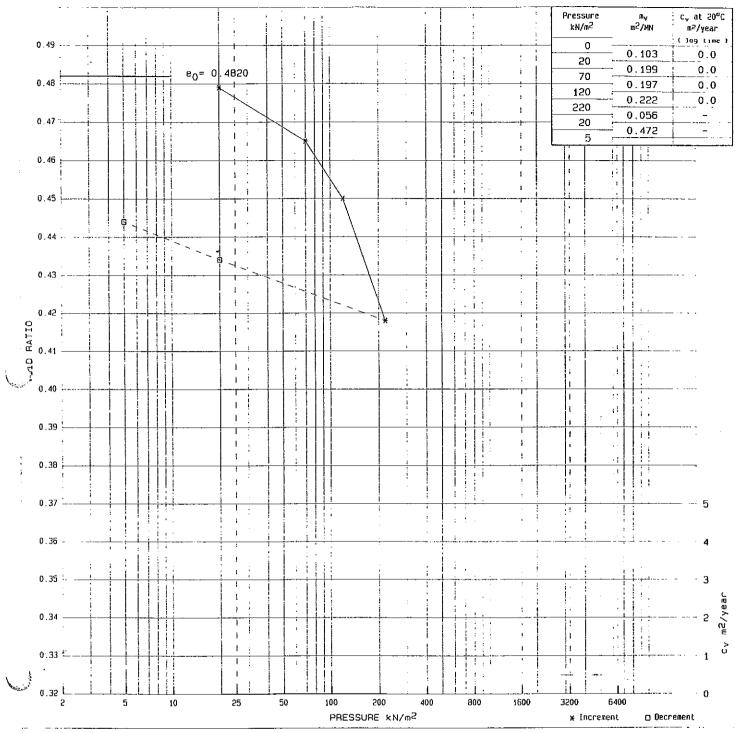
$\neg \top$	T				
	OTHER	Test Remarks and Notes	PSD : CL((+)S1/SA/GR 18K/20K/27K/35K Ccmp/CBR % > ZOmm=7.3 37.5mm=2 MCV % > ZOmm = 0.0 MCV % > ZOmm = 0.0 YSD : CL((+)S1/SA/GR 27K/28K/24K/21K	Contract	Sheet L3/39
	CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) PH Soll Water %			
	COMPACTION EARTHWORKS	Comp CBR Water 7d MCV mould % % Mg/m	Hvy (12) (1.97) Hvy (19> 1.80 Hvy 21 1.70 Hvy 9.8 1.97 Hvy 8.0 1.96 Hcv 18 1.44 12.0 Hcv 20 1.59 18.0 Hcv 9.0 1.59 18.0	ject Rybki fy pabk	Footbal! Association
-	CONSOL- IDATION	E V		Pro	
	SHEAR STRENGTH	13 С Ø Ype кра кРа Deg.			ane SB: Shear Box (resid) o Text
	CLASSIFICATION TESTS	p Not $\gamma_{\rm b}$ Test % Mg/m Type	Sieve 16 Sieve 16 24 18	A with P.W.P. measurement	REC: Reconstituted V: Vane (rburden pressure RR 7 ((max)
	CLASS	425 Prep W _L Wp % %	55% 47 48 43 19	neet /Drained /	emoulded REC: 1 ssumed overburd optor C: CBR
	SAMPLE DETA!LS	Description	Dark orange and reddish brown sandy gravelly CLAY Reddish brown slightly sandy gravelly CLAY Reddish brown sandy gravelly CLAY	For full explanation of symbols please see key sheet - U/C: Unconsolidated /Consolidated U/D: Unarained/Drained	 Single Stage Triaxial M: Multistage Triaxial REW: Remoulded REC: Reconstituted V: Vane — m_V and c_V given for load increment of 100kPa above assumed averburden pressure — sid: 2.5kg Hy; 4.5kg Vib: Vibratory Maulat - P; protor C: CBR 7 (max) — Water C C C C C C C C C C C C C C C C C C C
		Type No.	8 0 0 8	E H	z 0 z
		Depth m	1.00 - 1.00 1.00 - 1.00 3.80 - 3.90 3.80 - 3.90	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION FARTHMORKS
		5 6	TP 15	ž	



- Moisture Content/Dry Density
 Compaction at Natural Water Content
 ▼ Maximum Dry Density/Optimum Water Content

Type of Test/Mould	4.5Kg/CBR	Description	Hole	TP15
Particle Density Assumed Maximum Dry Density	2.65 Mg/m ³ 1.97 Mg/m ³	Dark orange and reddish brown sandy gravelly	Depth	1.00 -1.00
Optimum Water Content % retained 37.5mm sieve	12 % 2	CLAY	Туре	В
% retained 20mm sieve	7			Form 54/0


Remarks


Moisture Content/	Project	Contract
Laboratory - Dry Density Relationship	BYRKLEY PARK	121070
Exploration Associates	Football Association	L3/40

iates
()
n Asso(
ration
Explo
Ŵ

OTHER	Test Remarks and Notes	Conp/CBR x> 20mm=2.6 37.5mm=0 MCV x > 20mm = 0.0	Contract 121070	Sheet L3/41
CHEMICAL	SO ₃ SO ₃ (SO ₄) (SO ₄) PH Soll Water % g/ltr	,		Form 40/4
COMPACTION EARTHWORKS	Comp Type/ CBR Water γ_{d} MCV Mould % % Mg/m	Hvy (9.5)(2.10) Hvy (16> 1.87 Hvy (17 1.79 Hvy (17 2.05 Hvy (10 2.09 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 7.2 2.07 Hvy 1.45 10.2	Y PARK	Football Association
CONSOL- IDATION	m _v c _v Type/ m²/MN m²/yr Mould		Project BYRKLEY PARK	
SHEAR	σ3 σ ₀ P ₀ C:		int Diameter in mm	
CLASSIFICATION TESTS	425 Prep Not 7 Test w Wp ip Water 7 2 Test % Mg/m Type		dined A With P.W.P. measurement	integration of the control of the c
SAMPLE DETAILS	Description	Dark red slightly sandy gravelly CLAY	For full explanation of symbols please see key sheet - U/C: Unconsolidated/Consolidated U/D: Undershad Drained A with P.W.P. measurement T. Grand Rocco Structured W. Withterpoor Triown 1844 Permitted 1967 Permitted V. Nane	
	Type No.	а	ÍGÍH	NONS
	Depth	2.10 - 2.20	NOTES SHEAR STRENGTH	CONSOLIDATION COMPACTION EARTHWORKS
	H OG e	TP 16	S	·

Soil Description: Stiff dark red brown sandy gravelly CLAY

Liquid limit

% Plastic limit %

Particle density

 $2.65 \, \text{Mg/m}^3$ (Assumed)

Initial specimen dimensions:

75.0 mm dia. x 19.0

mm high.

4414 Area =

om2 Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

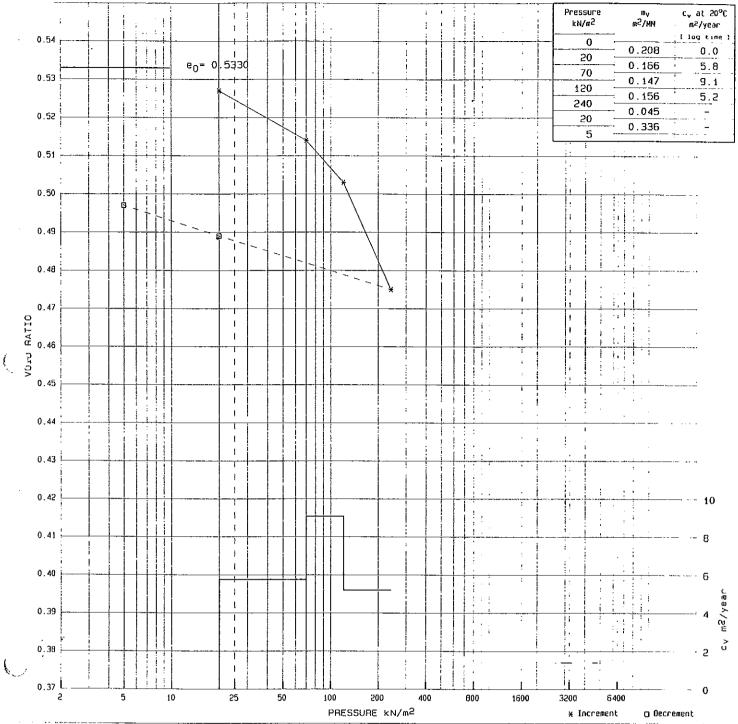
	Moisture content %	Bulk density Mg/m³	Dry density Mg/m³ :	Void ratio	Saturation %	Average Temperature	Oate started
Initial	16	2.07	1.79	0.4820	85	20 °C	27/06/01
Final	18	2.15	1.84	0.4440	105	.; 20 c	

Notes: 1) Swelling occured under 20 kN/m2 pressure .

2) Some remoulding required due to gravel content

ONE DIMENSIONAL CONSOLIDATION TES BS 1377: PART 5: 1990: CLAUSE 3	ST Borehole No. 3 Sample Type U Sample No.	Specimen taken 40 mm from base Depth 1.00m to 1.45m
SLR 5.3 Soil Rev. 2 July 95 Mechanics	BYRKLEY PARK	Loc No. Fig. L47, 121070

. BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	149.93 g 23.27 g	Area 44 Thickness Volume
Initial void ratio Swelling pressure Initial saturation Void ratio change factor AFTER TEST	0.000	Test started 27/ Cell Number Ring Number Average temperature
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	353.40 g 327.03 g 177.10 g 149.93 g 26.37 g 17.5 %	Volume change Final volume Final density Final dry density
Additional dry weight Final saturation	0.00 g 104 %	

GRAPHICAL DATA

Applied	Thickness			Voids	Log Time			Ŕ	
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	Mv m²/MN	t50	Cv m²/year	t90	
20.00	0.039	19.000	18.961	0.4794	0.103		****		
70.00	0.228	18.961	18.772	0.4646	0.199		*****		
120.00	0.413	18.772	18.587	0.4502	0.197		****		
220.00	0.825	18.587	18.175	0.4181	0.222		****		
20.00	0.623	18.175	18.377	0.4338	0.056				
5.00	0.493	18.377	18.507	0.4440	0.472				

Hole number 3 Sample number Depth 1.00m to 1.45m Specimen 40 mm from base of tube

Location number 121070 Job name BYRKLEY PARK Da

Soil Description: Stiff red brown sandy gravelly CLAY

Liquid limit

% Plastic

Plastic limit %

Particle density 2

2.62 Mg/m³ (Measured)

Initial specimen dimensions: 74.9 mm dia. x 19.0 mm high. Area = 4412 mm^2

Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

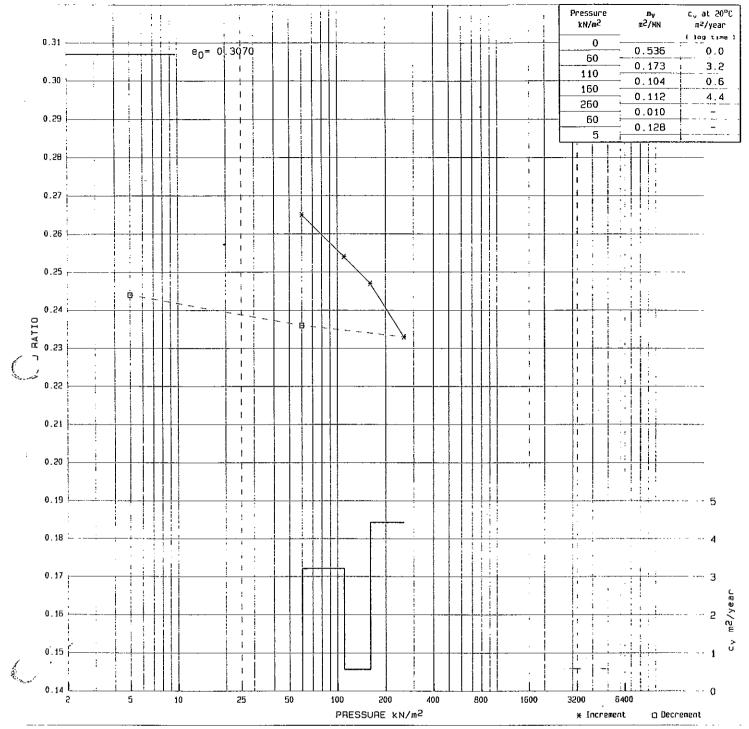
•	Moisture content %	Bulk density Mg/m³	Dry density Mg/m³	Yoid ratio	Saturation %	Average Temperature Date started
[nitial	21	2.07	1.71	0.5330	104	20 °C 28/06/01
Final	20	2.10	1.75	0.4970	105	20 °C 28/06/01

Notes: 1) Some remoulding required due to gravel content

ONE DIMENSIONAL CON	SOLIDATION TEST	Borehole No. 4 Sample Type U	Specimen taken 50 mm from base		
BS 1377 : PART 5 : 1990	: CLAUSE 3	Sample No.	Depth 1.00m to 1.45m		
SLR 5.3 Soil	Location	BYAKLEY PARK	Loc No. Fig. 14/3		
Rev. 2 July 95 Mechanics			121070 Jul-09-2001 15.10		

BEFORE TEST

Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Measured)	143.28 g 30.32 g	Area 4. Thickness
Initial void ratio Swelling pressure Initial saturation Void ratio change factor AFTER TEST		Cell Number Ring Number
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	177.60 g	Volume change . Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 113% by adjustment	0.00 g 105 % of final m	/c from 21.5%


GRAPHICAL DATA

Applied Pressure kN/m²	δH mm	Thick H1 mm	ness H2 mm	Voids Ratio	Mv m²/MN	Lo t50	g Time Cv m²/year	R t90
20.00	0.079	19.000	18.921	0.5265	0.208		**** **	
70.00	0.236	18.921	18.764	0.5138	0.166	1.6	5.77	
120.00	0.374	18.764	18.626	0.5027	0.147	1.0	9.09	
240.00	0.722	18.626	18.278	0.4746	0.156		5.21	
20.00	0.543	18.278	18.457	0.4891	0.045		3.21	
5.00	0.450	18.457	18.550	0.4966	0.336			

Hole number 4 Sample number Depth 1.00m to 1.45m Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Da

Soil Description: Firm red brown sandy gravelly CLAY

Liquid limit %

% Plastic limit

% Par

Particle density 2.65 Mg/m³ (Assumed)

Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. Area = 4414 mm

Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

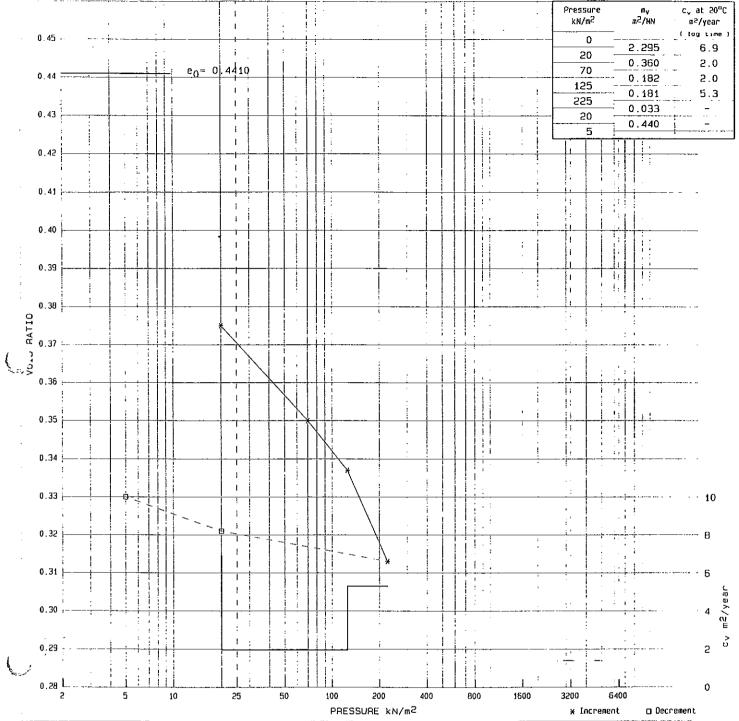
	Moisture content %	Bulk density Mg/m³	Dry density Mg/m³	Void ratio	Saturation %	Average Temperature Date started
Initial	12	2.28	2.03	0,3070	108	!!
Final	9.7	2.34	2.13	0.2440	105	1

Notes: i) Some remoulding required due to gravel content

ONE C	DIMENSIONAL CONS	SOLIDATION TEST	ON TEST Borehole No. 4 Sample Type U			Specimen taken 60 mm from base			
8S 1377 : PART 5 : 1990 : CLAUSE 3				Sample No.	Depth	h 3.00m to 3.45m			
SLA 5.3 Aev. 2 July 95	Soil Mechanics	Location	BYA	KLEY PARK		Loc No. 121070	Fig. 14/5		

BEFORE TEST

Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	169.73 g 21.17 g	Area 44 Thickness Volume
Initial void ratio Swelling pressure Initial saturation Void ratio change factor AFTER TEST		Cell Number Ring Number
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	177.90 g	Volume change Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 135% by adjustment	0.00 g 105 % of final m	/c from 12.4%


GRAPHICAL DATA

Applied		Thick	ness	Voids		Log	y Time	R
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	Mv m²/MN	t50	Cv m²/year	t90
60.00	0.610	18.960	18.350	0.2647	0.536		***** **	
110.00	0.769	18.350	18.191	0.2537	0.173	2.7	3.21	
160.00	0.864	18.191	18.096	0.2472	0.104	14.9	0.57	
260.00	1.066	18.096	17.894	0.2333	0.112	- 1.9	4.43	
60.00	1.030	17.894	17.930	0.2358	0.010			
5.00	0.904	17.930	18.056	0.2444	0.128			

Hole number 4 Sample number Depth 3.00m to 3.45m Specimen 60 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Da

Soil Description: Soft brown sandy gravelly CLAY with pockets of loose brown sand and some brick fragments Liquid limit % Plastic limit % Particle density 2.65 Mg/m³ (Assumed)

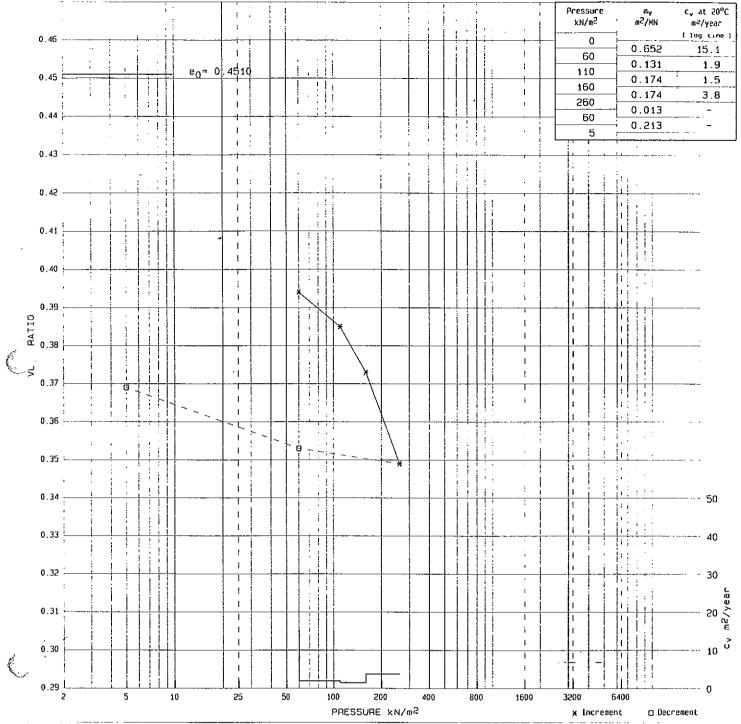
Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. Area * 4414 mm² Specimen Preparation and Drientation: Undisturbed, normal to sample axis unless otherwise stated below

	Moisture content %	Bulk density Mg/m³	Dry density Mg/m³	Void ratio	Saturation %	Average Temperature Date started
Initial	18	2.17	1.83	0.4410	110	20 °C . 29/06/01
Final	13	2.25	1.99	0.3300	105	

Notes: 1) Some remoulding required due to gravel content

ONE DIMENSIONAL CONS	SOLIDATION TEST	Borehole No. 5 Sample Type U	Specimen taken 50 mm from base
BS 1377 : PART 5 : 1990 :	: CLAUSE 3	Sample No.	Depth 1.00m to 1.45m
SLR 5.3 Soil	Location	BYRKLEY PARK	Loc No. Fig. 14/7
Rev. 2 July 95 Mechanics			Jul-10-2001 t4: 41

BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	154.39 g 28.21 g	Thickness Volume
Initial void ratio Swelling pressure Initial saturation Void ratio change factor	0.000 109 %	Test started 29, Cell Number Ring Number Average temperature
AFTER TEST		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	177.20 g	Volume change Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 132% by adjustment	0.00 g 105 % of final m	/c from 16.4%

GRAPHICAL DATA

Applied		Thick	ness	Voids		Log	Time	
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	Mv m²/MN	t50	Cv m²/year	t9
20.00	0.873	19.020	18.147	0.3750	2.295	1.3	6.91	
70.00	1.200	18.147	17.820	0.3502	0.360	4.3	1.96	
125.00	1.378	17.820	17.642	0.3367	0.182	4.2	1.95	
225.00	1.697	17.642	17.323	0.3125	0.181	_ 1.5	5.30	
20.00	1.581	17.323	17.439	0.3213	0.033			
5.00	1.466	17.439	17.554	0.3300	0.440			

Hole number 5 Sample number Depth 1.00m to 1.45m Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK D

Soil Description: Firm red brown gravelly CLAY

Liquid limit

%

Plastic limit

% Particle density

2.67 Mg/m³ (Measured)

Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. Area = 4416 mm²

Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

	Moisture content %	8v]k density Mg/m³	Dry density Mg/m³	Yoid ratio	Saturation %	Average Temperature Date started
Initial	16	2.14	1.84	0.4510	96	00 10 00 405 40
Final	15	2.23	1.95	0.3690	105	20 °C 29/06/01

Notes: 1) Some remoulding required due to gravel content

ONE DIMENSIONAL CONS BS 1377 : PART 5 : 1990 :		Borehole No. 5 Sample Type U Sample No.	Specimen taken 50 mm from base Depth 3.00m to 3.45m
SLR 5.3 Soil Rev. 2 July 95 Mechanics	Location	BYRKLEY PARK	Loc No. Fig. 11/7 121070

BEFORE TEST

Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Measured)	299.90 g 120.00 g 179.90 g 154.77 g 25.13 g 16.2 %	Thickness Volume Density
Initial void ratio Swelling pressure Initial saturation Void ratio change factor AFTER TEST		Test started 29/ Cell Number Ring Number Average temperature
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content Additional dry weight Final saturation Corrected from 118% by adjustment	358.60 g 333.37 g 178.60 g 154.77 g 25.23 g 14.5 %	Final volume Final density Final dry density Final void ratio

GRAPHICAL DATA

Applied		Thick	ness	Voids		Log	Time	R
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	Mv m²/MN	t50	Cv m²/year	t90
60.00	0.745	19.050	18.305	0.3944	0.652	0.6	15.12	
110.00	0.865	18.305	18.185	0.3852	0.131	4.5	1.92	
160.00	1.023	18.185	18.027	0.3732	0.174	5.7	1.50	
260.00	1.336	18.027	17.714	0.3493	0.174	2.2	3.77	
60.00	1.289	17.714	17.761	0.3529	0.013			
5.00	1.081	17.761	17.969	0.3688	0.213			

Hole number 5

Sample number Depth 3.00m to Specimen 50 mm from base of tube

3.45m

Location number 121070 Job name BYRKLEY PARK

Dа

Soil Description: Stiff red brown sandy gravelly CLAY

%

Liquid limit

Plastic limit

Particle density

2.65 Mg/m³ (Assumed)

75.0 mm dia. x 19.0 4414 mm^2 Initial specimen dimensions: mm high. Area ≕

Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

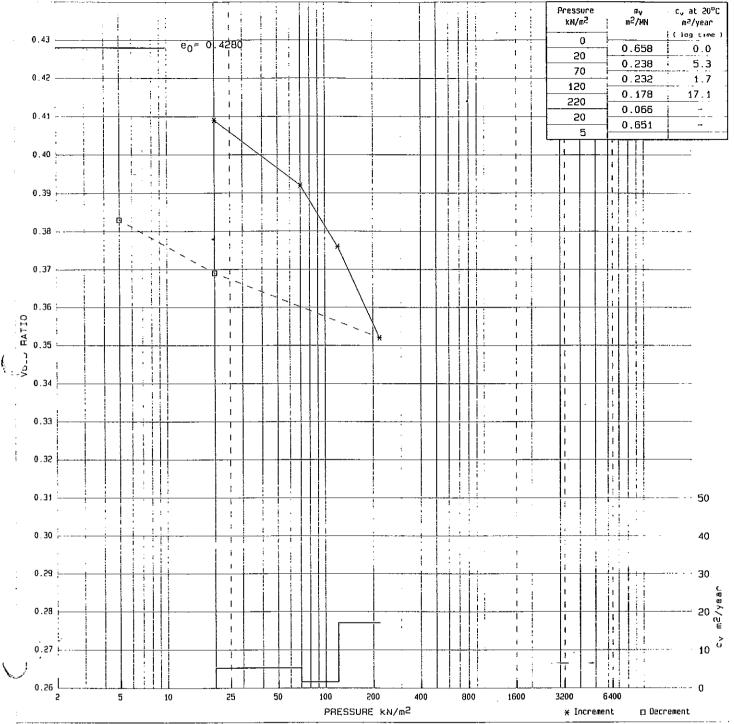
	Moisture content %	Bulk density Mg/m³	Ory density Mg/m³	Vojd ratjo	Saturation %	Average Temperature Date started
Initial	12	2.33	8.08	0.2720	116	20 °C 29/06/01
Final	10	2.33	2.12	0.2510	105	25/00/01

Notes: 1) Some remoulding required due to gravel content

ONE DIMENSIONAL CONS		Borehole No. 5 Sample Type U Sample No.	Specimen taken 50 mm from base Depth 5.00m to 5.45m
SLA 5.3 Soil Rev. 2 July 95 Mechanics	Location	BYRKLEY PARK	Loc No. Fig. \ \(\begin{align*} \lambda \ \lambda \end{align*} \\ \lambda \ \ \lambda \ \end{align*} \\ \lambda \ \ \lambda \ \ \lambda \ \ \lambda \ \ \lambda \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

BEFORE TEST

Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	315.70 g 120:30 g 195.40 g 174.62 g 20.78 g 11.9 %	Area Thickness Volume Density	4
Initial void ratio Swelling pressure Initial saturation Void ratio change factor AFTER TEST	0.272 0.000 115 % 0.06	Cell Number	29
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	377.00 g 353.02 g 178.40 g 174.62 g 23.98 g 9.9 %	Volume change Final volume Final density Final dry density	
Additional dry weight Final saturation Corrected from 145% by adjustment	0.00 g 105 % of final m	/c from 13.7%	


GRAPHICAL DATA

Applied Pressure kN/m²	δH mm	Thick H1 mm	ness H2 mm	Voids Ratio	Mv m²/MN	Log t50	g Time Cv m²/year	F t90
100.00	0.428	18.990	18.562	0.2435	0.225		****	~·
150.00	0.504	18.562	18.486	0.2384	0.082	4.5	1.98	
200.00	0.576	18.486	18.414	0.2336	0.078	6.0	1.48	
300.00	0.741	18.414	18.249	0.2225	0.090	3.6	2.43	
100.00	0.652	18.249	18.338	0.2285	0.024		2013	
5.00	0.315	18.338	18.675	0.2511	0.193			

Hole number 5 Sample number Depth 5.00m to 5.45m Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Da

Soil Description: Firm red brown gravelly CLAY

Liquid limit

% Plastic limit

Particle density

2.65 Mg/m³ (Assumed)

Initial specimen dimensions:

74.5 mm dia. x 19.0

mm hìgh.

Area ⇒ 4362 mm²

.....

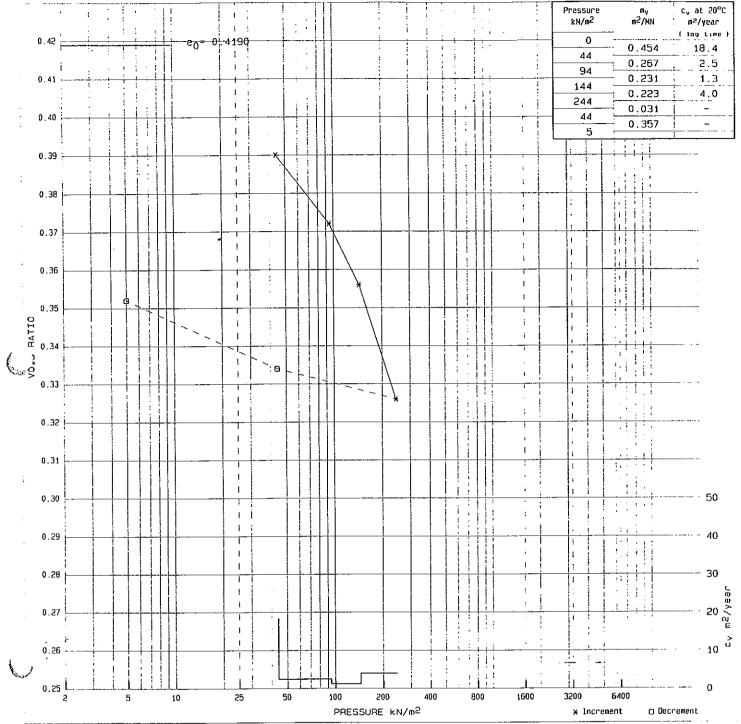
Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

	Moisture content %	Bulk density Mg/m³	Dry density Mg/m³ ¦	Void ratio	!	Saturation %	Average Temperature Date started
Initial	17	2.18	1.86	0.4280	i	108	20 °C . 02/07/01
Final	15	2.21	1.92	0.3830	i	105	20 0 02/0//01

Notes: 1) Some remoulding required due to gravel content

ONE DIMENSIONAL CONSOLIDATION TEST				Borehole No. Sample Type	6 Specia		men taken 50 mm from base		
BS 137	7 : PART 5 : 1990 :	: CLAUSE 3		Sample No.		Depth	1.00m to	1.45m	
SLR 5.3	Soil	Location	BYR	KLEY PARK			Loc No. 121070	Fig. Lu/15	
July 95	Mechanics							Jul-10-2001 14: 31	

BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit ' Particle density (Assumed)	286.30 g 105.70 g 180.60 g 153.82 g 26.78 g 17.4 %	Area 43 Thickness Volume
Initial void ratio Swelling pressure Initial saturation Void ratio change factor		Cell Number Ring Number
AFTER TEST		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	163.70 g 153.82 g	Volume change . Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 127% by adjustment	0.00 g 105 % of final m	/c from 18.3%

GRAPHICAL DATA

Applied		Thick	ness	Voids		Log	g Time	R
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	Mv m²/MN	t50	Cv m²/year	t90
20.00	0.250	19.000	18.750	0.4089	0.658		**** **	
70.00	0.473	18.750	18.527	0.3921	0.238	1.7	5.31	
120.00	0.688	18.527	18.312	0.3760	0.232	5.3	1.66	
220.00	1.014	18.312	17.986	0.3515	0.178	- 0.5	17.13	
20.00	0.776	17.986	18.224	0.3693	0.066			
5.00	0.598	18.224	18.402	0.3827	0.651			

Hole number 6 Sample number Depth 1.00m to 1.45m Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Soil Description: Firm brown gravelly CLAY

Liquid limit

%

Plastic limit

Particle density

2.60 Mg/m³ (Measured)

Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high.

Area = 4414 mm²

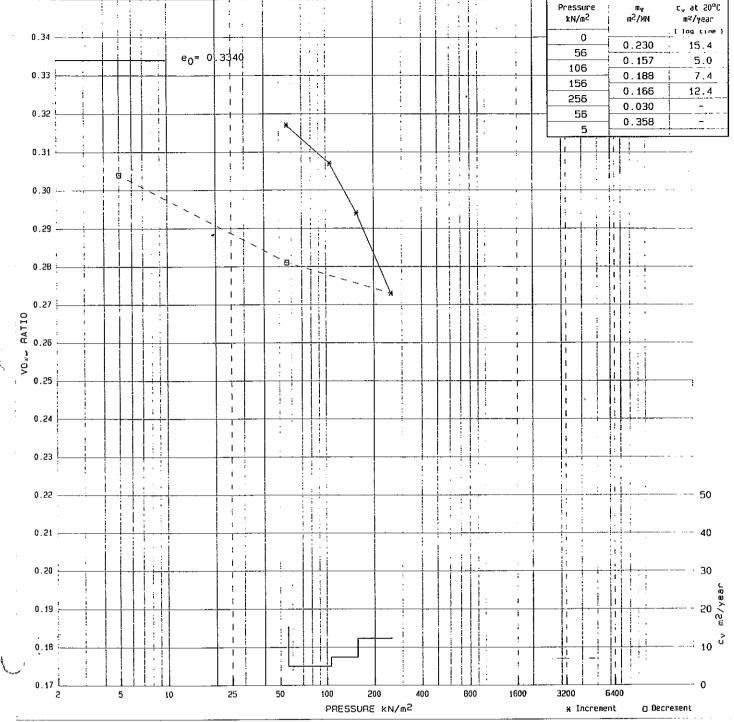
Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

	Moisture content %	Bulk density Mg/m³	Ory density Ng/m³	Void ratio	Saturation %	Average Temperature	Date started
Initial	18	2.15	1.83	0.4190	109	 20 °C	02/07/01
Final	14	2.20	1.93	0.3520	105	20 0	02/0//01

Notes: 1) Some remoulding required due to gravel

ONE DIMENSIONAL CO	NSOLIDATION TEST	Borehole No. 6 Sample Type U	Specimen taken 70 mm from base
BS 1377 : PART 5 : 1990	: CLAUSE 3	Sample No.	Depth 2.20m to 2.65m
SLR 5.3 Soil Rev. 2 July 95 Mechanics	Location	BYRKLEY PARK	Loc No. Fig. L4/15
July 95 McChanics			. Jul-10-2001 14: 28

BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Measured)	120.20 g 180.70 g 153.79 g 26.91 g	Area 44 Thickness Volume
Initial void ratio Swelling pressure Initial satúration Void ratio change factor AFTER TEST	0.418 0.000 108 % 0.07	Test started 02/ Cell Number Ring Number Average temperature
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content Additional dry weight	178.36 g	Volume change Final volume Final density Final dry density
Final saturation Corrected from 134% by adjustment	105 है	/c from 18.1%

GRAPHICAL DATA

Applied		Thick	ness	Voids		Log	Time	R
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	M√ m²/MN	t50	Cv m²/year	t90
44.00	0.380	19.010	18.630	0.3903	0.454	0.5	18.42	
94.00	0.629	18.630	18.381	0.3718	0.267	3.6	2.47	
144.00	0.841	18.381	18.169	0.3559	0.231	6.9	1.26	
244.00	1.247	18.169	17.763	0.3256	0.223	2.1	4.00	
44.00	1.137	17.763	17.873	0.3339	0.031			
5.00	0.888	17.873	18.122	0.3524	0.357			

Hole number 6 Sample number Depth 2.20m to 2.65m Specimen 70 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Stiff brown gravelly CLAY Soil Description:

Liquid limit

Plastic limit

Particle density

2.65 Mg/m³

(Assumed)

_{mm}2 Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. 4417

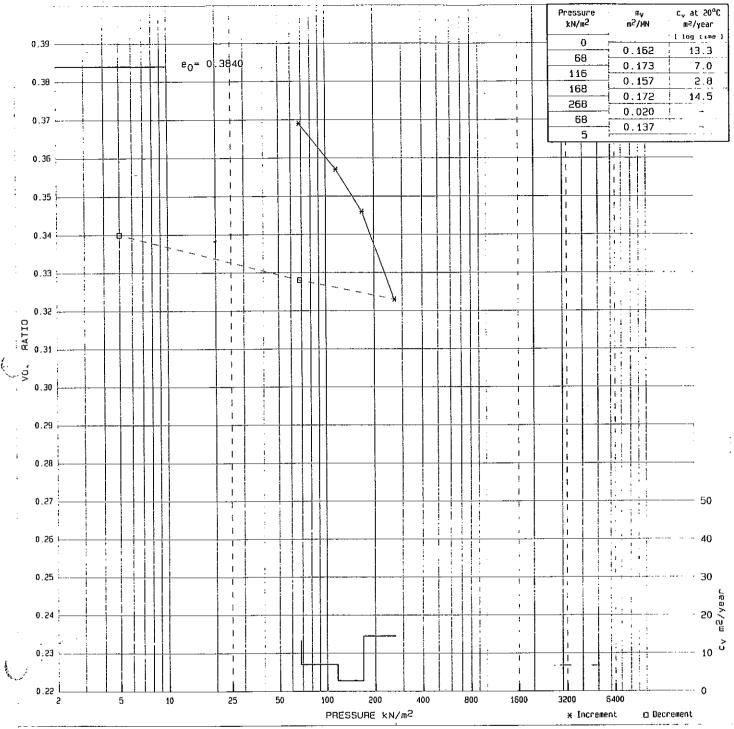
Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

,	Moisture content %	Bulk density Mg/m³	Dry density Mg/m³	Yoid ratio	Saturation %	Average Temperature	Date started
Initial	11	2.20	1.98	0.3340	87	50 °C	02/07/01
_: Final	12	2.28	2.03	0.3040	105	20 0	02/0//01

Notes: 1) Some remoulding required due to gravel content

ONE DIMENSIONAL CON	Borehole No. 6 Samole Type U	Specime	men taken 60 mm from base		
BS 1377 : PART 5 : 1990	: CLAUSE 3	Sample No.	Depth	2.80m to 3.25m	
SLR 5.3 Soil	Location	YRKLEY PARK	į	Loc No. Fig. 12/17	
Hev. 2 July 95 Mechanics			<u>!</u>	Jul-10-2001 14: 38	

BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	166.50 g 18.30 g	Thickness Volume
Initial void ratio Swelling préssure Initial saturation Void ratio change factor		Test started 02/ Cell Number Ring Number Average temperature
AFTER TEST		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	178.80 g 166.50 g	Volume change . Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 120% by adjustment	0.00 g 105 % of final m	/c from 13.8%

GRAPHICAL DATA

Applied		Thick	ness	Voids		Log	Time	R
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	Mv m²/MN	t50	Cv m²/year	t90
56.00	0.244	18.980	18.736	0.3171	0.230	0.6	15.41	
106.00	0.391	18.736	18.589	0.3067	0.157	1.8	5.03	
156.00	0.566	18.589	18.414	0.2944	0.188	1.2	7.42	
256.00	0.871	18.414	18.109	0.2730	0.166	- 0.7	12.39	
56.00	0.761	18.109	18.219	0.2807	0.030			
5.00	0.428	18.219	18.552	0.3041	0.358			

Hole number 6 Sample number Depth 2.80m to 3.25m Specimen 60 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Soil Description: Stiff brown gravelly CLAY

Liquid limit

%

Plastic limit

% Part

Particle density

2.66 Mg/m³ (M

(Measured)

Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. Area = 4414 mm^2

Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

	1	Bulk density Mg/m³	Dry density Ng/m³	Void ratio	Saturation %	Average Temperature	Date started
Initial	12	2.16	1.93	0.3840	84	20 °C	1 02/07/01
Final	13	2.25	1.98	0.3400	105		

Notes: 1) Same remoulding required due to gravel content

	DIMENSIONAL CONS		Borehole No. Sample Type Sample No.	U	men taken 5 3.40m to	0 mm from base 3.85m
SLA 5.3 Rev. 2 July 95	Soil Mechanics	Location	BYRKLEY PARK		Loc No. 121070	Fig. 14/17

BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Measured)	299.90 g 119.20 g 180.70 g 161.13 g 19.57 g 12.1 %	Thickness Volume Density	44
Initial void ratio Swelling pressure Initial saturation Void ratio change factor		Cell Number Ring Number	02,
AFTER TEST	,		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	361.90 g 338.13 g 177.00 g 161.13 g 23.77 g 13.4 %	Volume change Final volume Final density Final dry density	
Additional dry weight Final saturation Corrected from 115% by adjustment	0.00 g 105 % of final m	/c from 14.8%	

GRAPHICAL DATA

Applied		Thickness		Voids		Log Time		R
Pressure kN/m²	δH mm	H1 mm	H2 mm	Ratio	Mv m²/MN	t50	Cv m²/year	t90
68.00	0.209	18.990	18.781	0.3686	0.162	0.7	13.25	
116.00	0.365	18.781	18.625	0.3573	0.173	1.3	7.00	
168.00	0.517	18.625	18.473	0.3462	0.157	3.2	2.80	
268.00	0.835	18.473	18.155	0.3230	0.172	0.6	14.53	
68.00	0.762	18.155	18.228	0.3283	0.020			
5.00	0.605	18.228	18.385	0.3398	0.137			

Hole number 6 Sample number Depth 3.40m to 3.85m Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK Dā

Soil Description: Stiff brown gravelly CLAY

%

Liquid limit

Dlactic li

Plastic limit %

Particle density 2.65 Mg/m³ (Assumed)

Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. Area = 4413 mm²

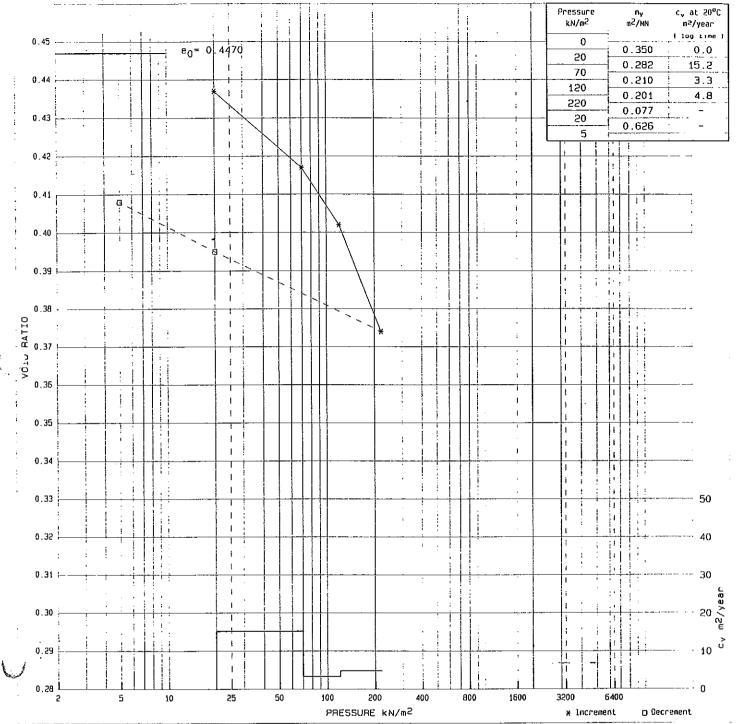
Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

	Moisture content %	8ulk density Mg/m³	Ory density Mg/m³	Yoid ratio	Saturation %	Average Temperature Date started
Initial	11	2.13	1.91	0.3850	79	20 °c 02/07/01
Final	14	2.24	1.97	0.3410	105	20 0 02/0//01

Notes: i) Some remoulding required due to gravel content

ONE DIMENSIONAL CONS	SOLIDATION TEST	Borehole No. 6 Samole Type U	Specimen taken 60 mm from base		
BS 1377 : PART 5 : 1990 :	CLAUSE 3	Sample No.	Depth 5.20m to 5.65m		
SLA 5.3 Soil Rev. 2 July 95 Mechanics	Location B	YRKLEY PARK	Loc No. Fig. 14/21 121070		

· BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	300.10 g 121.10 g 179.00 g 160.62 g 18.38 g 11.4 %	Thickness Volume Density
Initial void ratio Swelling pressure Initial saturation Void ratio change factor	0.384 0.000 78 % 0.07	Cell Number
AFTER TEST		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	362.40 g 339.52 g 178.90 g 160.62 g 22.88 g 13.5 %	Volume change Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 111% by adjustment	0.00 g 105 % of final m	/c from 14.2%

GRAPHICAL DATA

Applied Pressure kN/m²	δH mm	Thick H1 mm	ness H2 mm	Voids Ratio	Mv m²/MN	Log t50	Time Cv m²/year	R t90
104.00	0.443	19.020	18.577	0.3526	0.224	13.5	0.68	
154.00	0.668	18.577	18.352	0.3362	0.242	0.4	22.16	
204.00	0.811	18.352	18.209	0.3258	0.156	2.8	3.10	
304.00	1.101	18.209	17.919	0.3047	0.159	- 0-8	10.61	
104.00	1.069	17.919	17.951	0.3070	0.009			
5.00	0.605	17.951	18.415	0.3408	0.261			

Hole number 6 Sample number Depth 5.20m to 5.65m Specimen 60 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Stiff brown gravelly CLAY Soil Description:

Liquid limit

%

Plastic limit

%

Particle density

 2.65 Mg/m^3

(Assumed)

75.0 mm dia. x

mm high.

_{mm}2 4414

Initial specimen dimensions: 19.0 Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

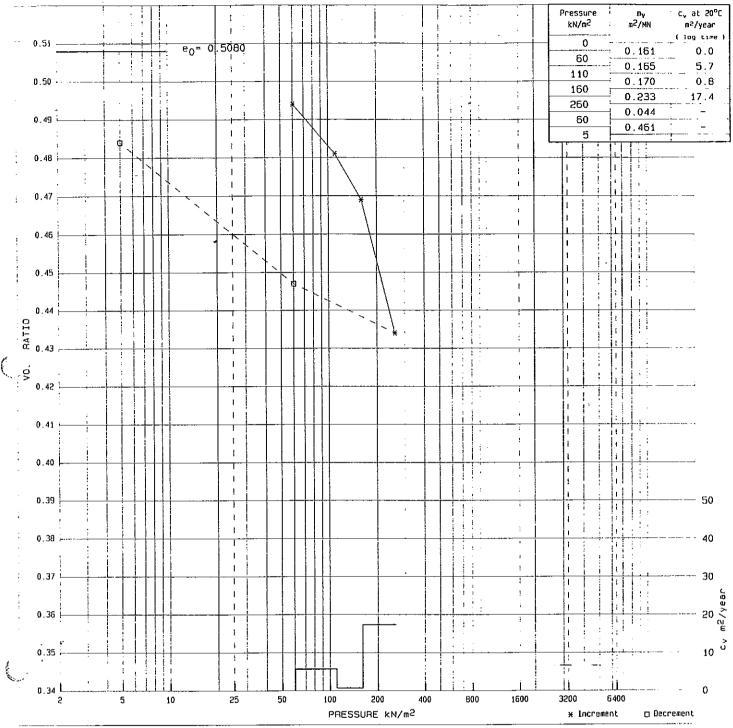
!	Moisture content %	Bulk density Mg/m³	Ory density Mg/m³	Void ratio	Saturation %	Average Temperature Date started
· Initial	17	2.14	1.83	0.4470	102	20 °C 04/07/01
Final	16	2.19	1.89	0.4080	105	20 0 04707701

Notes: 1) Swelling occured under 20 kN/m2 pressure

2) Some remoulding required due to gravel

ONE DIMENSIONAL CONS	Borehole No. Sample Type	•	Specia	men taken 50 mm from base			
8S 1377 : PART 5 : 1990	Sample No. Dept			1.00m to	1.45m		
SLR 5.3 Soil Rev. 2 July 95 Mechanics	Location	848	KLEY PARK			Loc No. 121070	Fig. LL/23

BEFORE TEST


Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	299.70 g 119.80 g 179.90 g 153.55 g 26.35 g 17.1 %	Area 44 Thickness Volume Density
Initial void ratio Swelling pressure Initial saturation Void ratio change factor		Cell Number Ring Number
AFTER TEST		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	360.10 g 331.35 g 177.80 g 153.55 g 28.75 g 16.1 %	Volume change Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 122% by adjustment	0.00 g 105 % of final r	m/c from 18.7%

GRAPHICAL DATA

Applied Pressure kN/m²	δΗ mm	Thick Hl mm	ness H2 mm	Voids Ratio	Mv m²/MN	Log t50	g Time Cv m²/year	R t90
20.00	0.133	19.000	18.867	0.4374	0.350		****	
70.00	0.399	18.867	18.601	0.4171	0.282	0.6	15.21	
120.00	0.594	18.601	18.406	0.4022	0.210	. 2.7	3.30	
220.00	0.964	18.406	18.036	0.3740	0.201	18	4.80	
20.00	0.687	18.036	18.313	0.3951	0.077			
5 00	0.515	18 313	18.485	0.4083	0.626			

Hole number 7 Sample number Depth 1.00m to 1.45m Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Stiff brown gravelly CLAY Soil Description:

Liquid limit

Plastic limit

%

Particle density

 $2.65 \, \text{Mg/m}^{3}$ (Assumed)

 mm^2 4412 Initial specimen dimensions: 74.9 mm dia. x 19.0 mm hìgh.

Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

:	Maisture content %	Bulk density Mg/m³	Ory density Mg/m³	Yoid ratio	Saturation %	Average Temperature	Date started
Initial	17	2.06	1.76	0.5080	90	20 °C	06/07/01
Final	19	2.13	1.79	0.4840	105		00/0//01

Notes: 1) Swelling occured under 60 kN/m2 pressure

2) Some remoulding required due to gravel content

ONE DIMENSIONAL CONSOLIDATION TEST				Borehole No. 7 Sample Type U	Specimen taken 50 mm from base		
BS 137	77 : PART 5 : 1990 :	CLAUSE 3		Sample No.	Depth	3.00m to	3.45m
SLA 5.3		Location	ВҮР	KLEY PARK		Loc No. 121070	Fig. مراحة
;Hev. 2 ;July 95	Mechanics					121070	Jul-23-2001 11-20

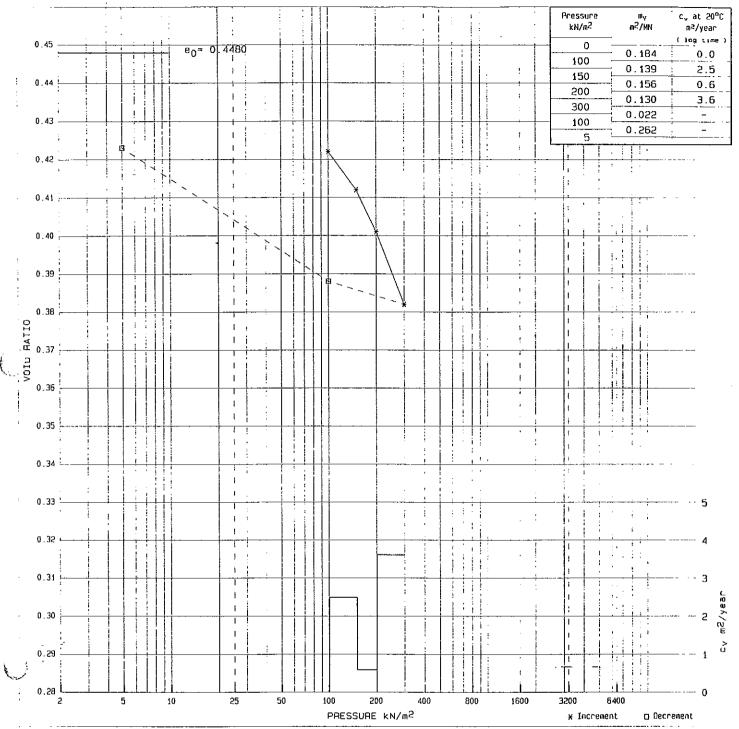
BEFORE TEST

Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	147.29 g 25.31 g	Area 44 Thickness Volume
Initial void ratio Swelling pressure Initial satúration Void ratio change factor	0.508 0.000 89 % 0.07	Cell Number Ring Number
AFTER TEST		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content		Volume change Final volume Final density Final dry density

0.00 g Additional dry weight Final saturation 105 %

Corrected from 115% by adjustment of final m/c from 20.9%

GRAPHICAL DATA


Applied Pressure kN/m²	δH mm	Thick H1 mm	ness H2 mm	Voids Ratio	Mv m²/MN	Log t50	g Time Cv m²/year	R t90
60.00	0.184	19.000	18.816	0.4936	0.161		****	
110.00	0.339	18.816	18.661	0.4813	0.165	1.6	5.71	
160.00	0.498	18.661	18.502	0.4687	0.170	12.0	0.75	
260.00	0.930	18.502	18.070	0.4344	0.233	0.5	17.39	
60.00	0.772	18.070	18.228	0.4469	0.044			
5.00	0.310	18.228	18.690	0.4836	0.461			

Hole number 7

Sample number Depth 3.00m to Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Dа

Soil Description: Stiff brown gravelly CLAY

Liquid limit

%

Plastic limit

Pantinia

Particle density 2.65 Mg/m^3 (Assumed)

Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. Area = 4414 mm^2

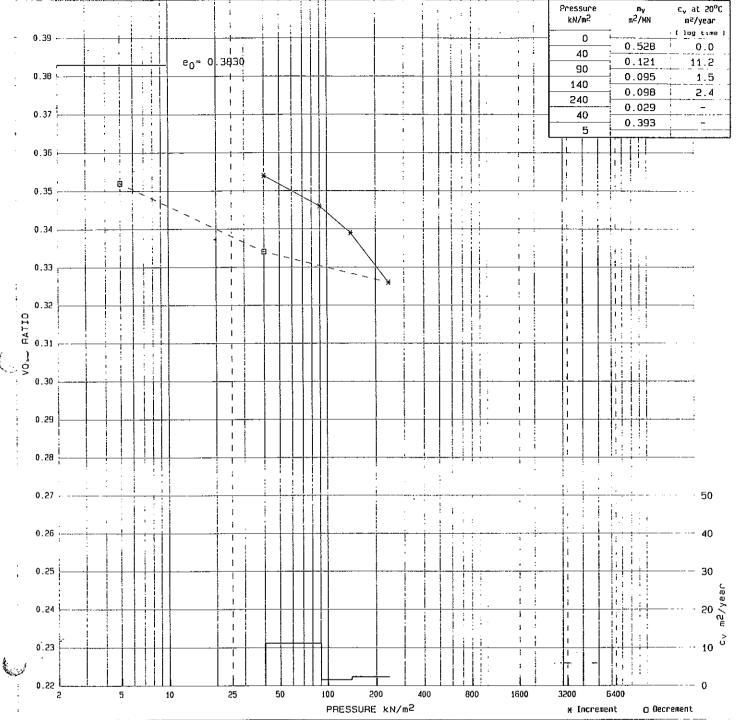
Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

-	Moisture content %	Bulk density Mg/m³	Ory density Mg/m³	Void ratio	Saturation %	Average Temperature . Date started
Initial	16	2,12	1.83	0.4480	93	20 ^{.0} C 04/07/01
Final	17	2.17	1.86	0.4230	105	20-1 04/0//01

Notes: 1) Some remoulding required due to gravel content

ONE DIMENSIONAL CONS BS 1377 : PART 5 : 1990 :	. —	Borehole No. 7 Sample Type U Sample No.	Specimen taken 80 mm from base Depth 5.00m to 5.45m
SLR 5.3 Soil Rev. 2 July 95 Mechanics	Location	BYRKLEY PARK	Loc No. Fig/-7 121070 dul-16-2001 08:57

BEFORE TEST


Weight of dry sample	297.40 g 119.80 g 177.60 g 153.48 g 24.12 g 15.7 %	Area 44 Thickness Volume
Initial void ratio Swelling pressure Initial saturation Void ratio change factor		Test started 04/ Cell Number Ring Number Average temperature
AFTER TEST		
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	177.90 g	Volume change Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 114% by adjustment	0.00 g 105 % of final m	/c from 18.2%

GRAPHICAL DATA

Applied Pressure kN/m²	δH mm	Thick H1 mm	ness H2 mm	Voids Ratio	Mv m²/MN	Log t50	g Time Cv m²/year	R t90
100.00	0.350	19.000	18.650	0.4215	0.184		****	
150.00	0.480	18.650	18.520	0.4116	0.139	3.6	2.49	
200.00	0.624	18.520	18.376	0.4006	0.156	15.1	0.59	
300.00	0.863	18.376	18.137	0.3824	0.130	- 2-4	3.61	
100.00	0.784	18.137	18.216	0.3884	0.022			
5.00	0.331	18.216	18.669	0.4229	0.262			

Hole number 7 Sample number Depth 5.00m to 5.45m Specimen 80 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Soil Description: Stiff brown gravelly CLAY

Liquid limit

%

Plastic limit

% Particle density

2.65 Mg/m³

(Assumed)

Initial specimen dimensions: 75.0 mm dia. x 19.0 mm high. Area = 4414 mm²

Specimen Preparation and Orientation: Undisturbed, normal to sample axis unless otherwise stated below

	Moisture content %	Bulk density Mg/m³	Dry density Mg/m³	Void ratio	Saturation %	Average Temperature Date started
Initial	14	2.18	1.91	0,3830	96	20 °C 09/07/01
Final	14	2.23	1.96	0.3520	105	20 0 03/0//01

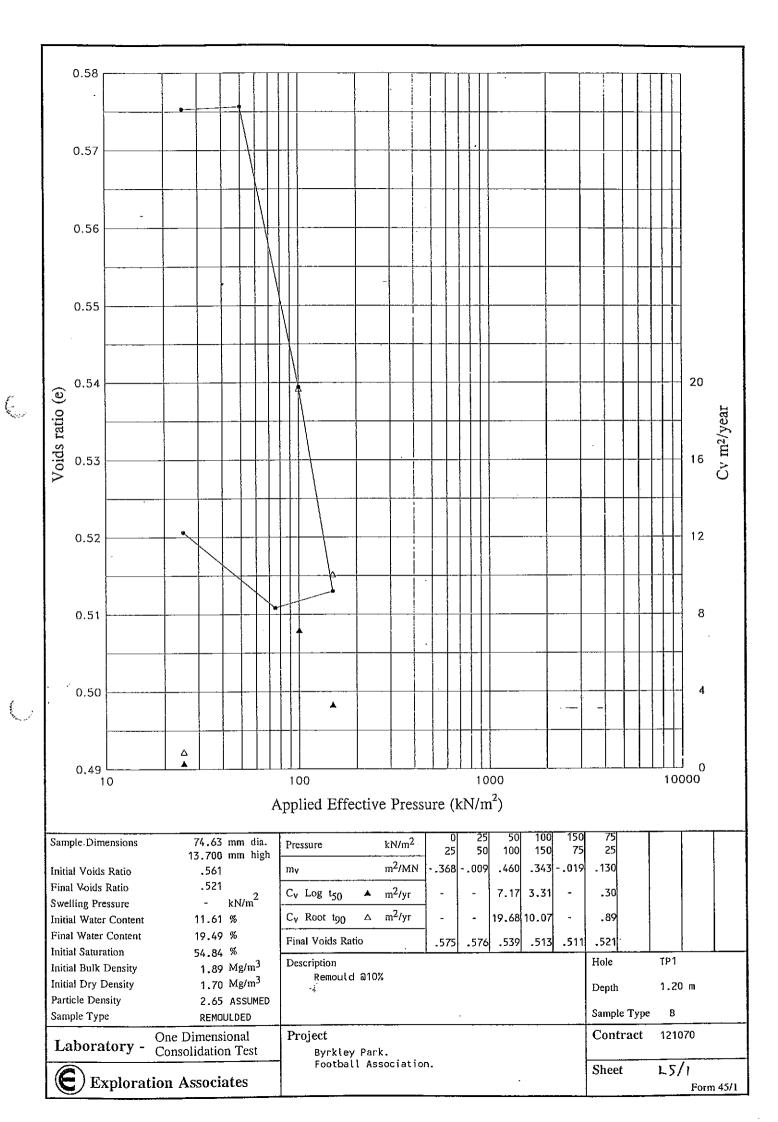
Notes: 1) Swelling occured under 40 kN/m2 pressure

2) Some remoulding required due to gravel content

ONE DIMENSIONAL CONS	Borehole No. 8 Sample Type U	Specimen taken 50 mm from base		
BS 1377 : PART 5 : 1990	: CLAUSE 3	Sample No.	Depth 3	.00m to 3 .45m
SLR 5.3 Soil Rev. 2 July 95 Mechanics	Location	BYRKLEY PARK	Loc 12	Fig. Lu/21 21070 Jul-23-2001 11 18

BEFORE TEST

Weight of sample + ring Weight of ring Weight of sample Weight of dry sample Weight of initial moisture Initial moisture content Liquid limit Particle density (Assumed)	160.86 g 22.24 g	Area 44 Thickness Volume
Initial void ratio Swelling pressure Initial saturation Void ratio change factor AFTER TEST		Test started 09, Cell Number Ring Number Average temperature
Weight of MAIN sample + tin Weight of MAIN dry sample + tin Weight of wet sample Weight of dry sample Weight of moisture Final moisture content	24.84 g 13.9 %	Volume change Final volume Final density Final dry density
Additional dry weight Final saturation Corrected from 116% by adjustment	0.00 g 105 % of final m	/c from 15.4%


GRAPHICAL DATA

Applied				Voids		Log	F	
Pressure	$\delta \mathrm{H}$	H1	H2	Ratio	Μv	t50	Cv	t9C
kN/m²	mm	mm	mm		m²/MN		m²/year	
40.00	0.402	19.020	18.618	0.3539	0.528		****	
90.00	0.515	18.618	18.505	0.3457	0.121	0.8	11.20	
140.00	0.603	18.505	18.417	0.3393	0.095	5.8	1.53	
240.00	0.784	18.417	18.236	0.3261	0.098	- 3.7	2.36	
40.00	0.678	18.236	18.342	0.3339	0.029			
5.00	0.426	18.342	18.594	0.3522	0.393			

Hole number 8

Sample number Depth 3.00m to 3.45m Specimen 50 mm from base of tube

Location number 121070 Job name BYRKLEY PARK

Consolidation Test

Contract Title : Byrkley Park.

Date

: 07/08/01

Description

Remould a10%

Bore Hole

: TP1

Depth

Sub Sample

: 1.20 m : 1

Ring weight	110.28	g -			
Sample + Ring weight (before)	223.83	g . ·	Specific Gravity	2.65	Assumed
Sample + Ring weight (after)	231.85	g	Height	13.700	mm
Dry weight + Ring weight	212.02	g	Diameter	74.63	mm
Dry weight	101.74	g			
Mass of Water (before)	11.81	g	Area	4374.4	mm^2
Mass of Water (after)	19.83	•	Volume	59929.0	mm^3
Initial Moisture content	11.61	8			
Final Moisture content	19.49	양	Saturation	54.84	ક
Initial Bulk density	1.89	Mg/m^3	Ht of solids	8.777	mm
Initial Dry density	1.70	Mg/m^3			

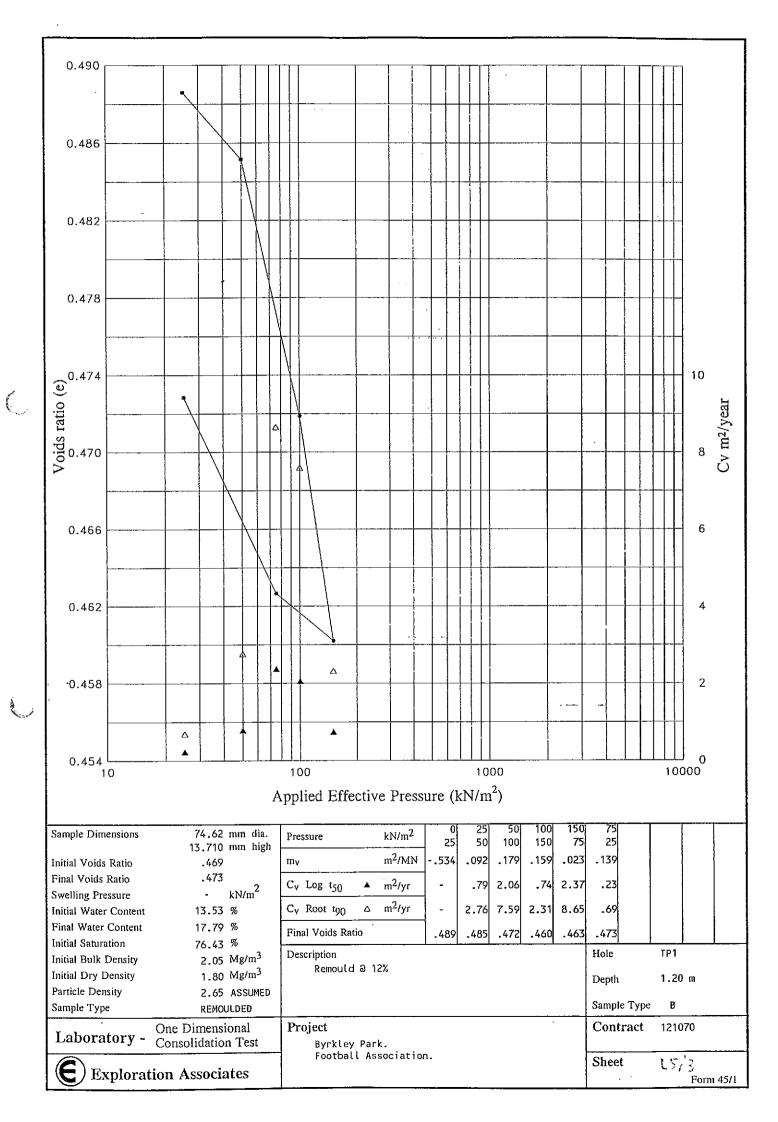
1						,					
	Load	Height	Actual	Ht Of	Voids	Mν	t50	t90	Mean	Cv (i)	Cv (ii)
k	N/M^2	Change	Height	Voids	Ratio	m^2/MN	(i)	(ii)	Height	m^2/yr	m^2/yr
	0	-	13.700	4.923	.561	368	_	-	13.763	_	_
-	25	126	13.826	5.049	.575	009	_	-	13.828	_	_
	50	003	13.829	5.052	.576	.460	.63	.98	13.670	7.17*	19.68*
	100	.318	13.511	4.734	.539	.343	1.31	1.84	13.395	3.31*	10.07*
	150	.232	13.279	4.502	.513	019	_	-	13.270	-	
-	- 75	.019	13.260	4.483	.511	.130	14.79	21.06	13.303	.30*	.89*
ľ	25	086	13.346	4.569	.521	. 230	44.17	21.00		.50	.05

 \star Denotes Temperature correction applied in calculating Cv value

ONE DIMENSIONAL OEDOMETER TEST

Project

Byrkley Park.


Football Association.

Contract

121070

Figure

15/2

Consolidation Test Contract Title : Byrkley Park. Bore Hole : TP1 Date : 07/08/01 Depth : 1.20 m Description Remould a 12% Sub Sample : 2 Ring weight 108.47 g Sample + Ring weight (before) 231.26 g Specific Gravity 2.65 Assumed Sample + Ring weight (after) 235.87 g Height 13.710 mm Dry weight + Ring weight 216.63 g Diameter 74.62 mm Dry weight 108.16 g Mass of Water (before) 14.63 g Area 4373.2 mm² Mass of Water (after) Volume 19.24 g 59956.7 mm³ Initial Moisture content 13.53 % Final Moisture content 17.79 % Saturation 76.43 % Initial Bulk density 2.05 Mg/m³ Ht of solids 9.333 mm Initial Dry density 1.80 Mg/m^3 Actual Ht Of Voids Mv t50 t90 Load Height Mean Cv (i) Cv (ii) kN/M² Change Voids Ratio m²/MN Height (i) (ii) Height m^2/yr m^2/yr 0 13.710 4.377 .469 13.802 -.534 25 -.183 13.893 4.560 .489 .092 5.99 7.27 13.877 .79* 2.76*

50

100

150

75

25

.032

.124

.109

-.023

-.095

13.861

13.737

13.628

13.651

13.746

4.528

4.404

4.295

4.318

4.413

.485

.472

.460

.463

.473

.179

.159

.023

.139

2.24

6.11

1.90

20.50

2.59

8.35

2.22

28.52

13.799

13.683

13.640

13.699

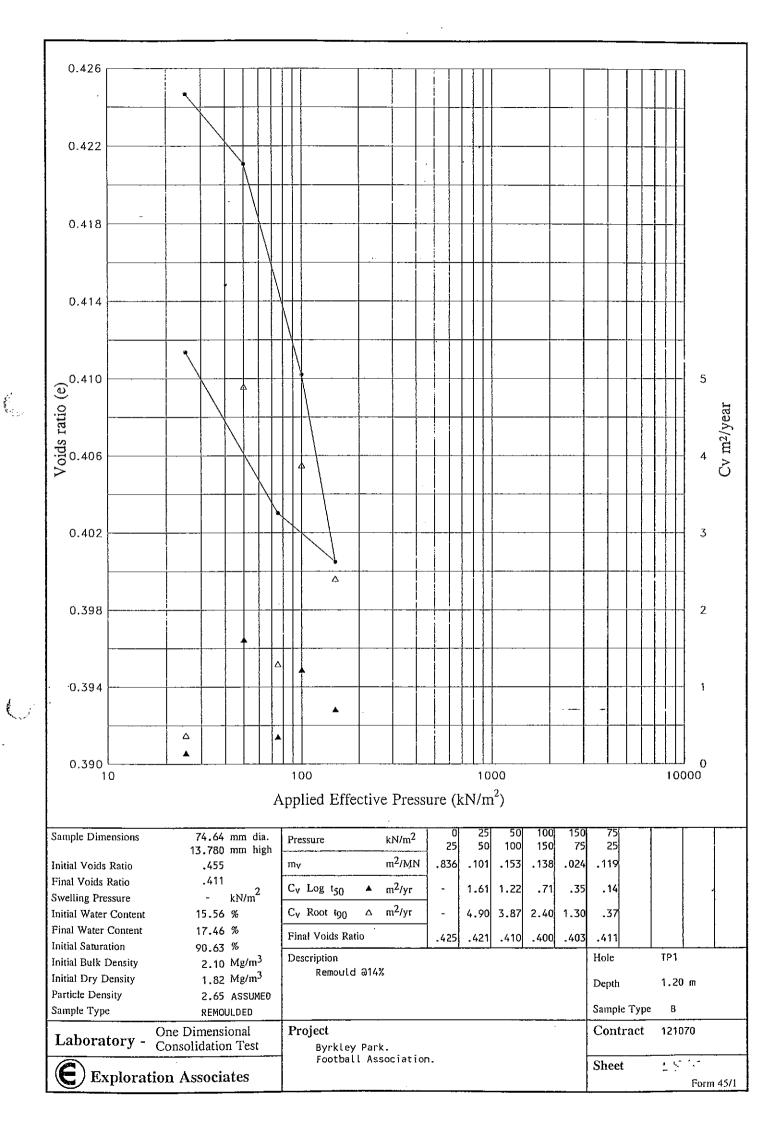
2.06*

2.37*

.23*

.74*

7.59*


2.31*

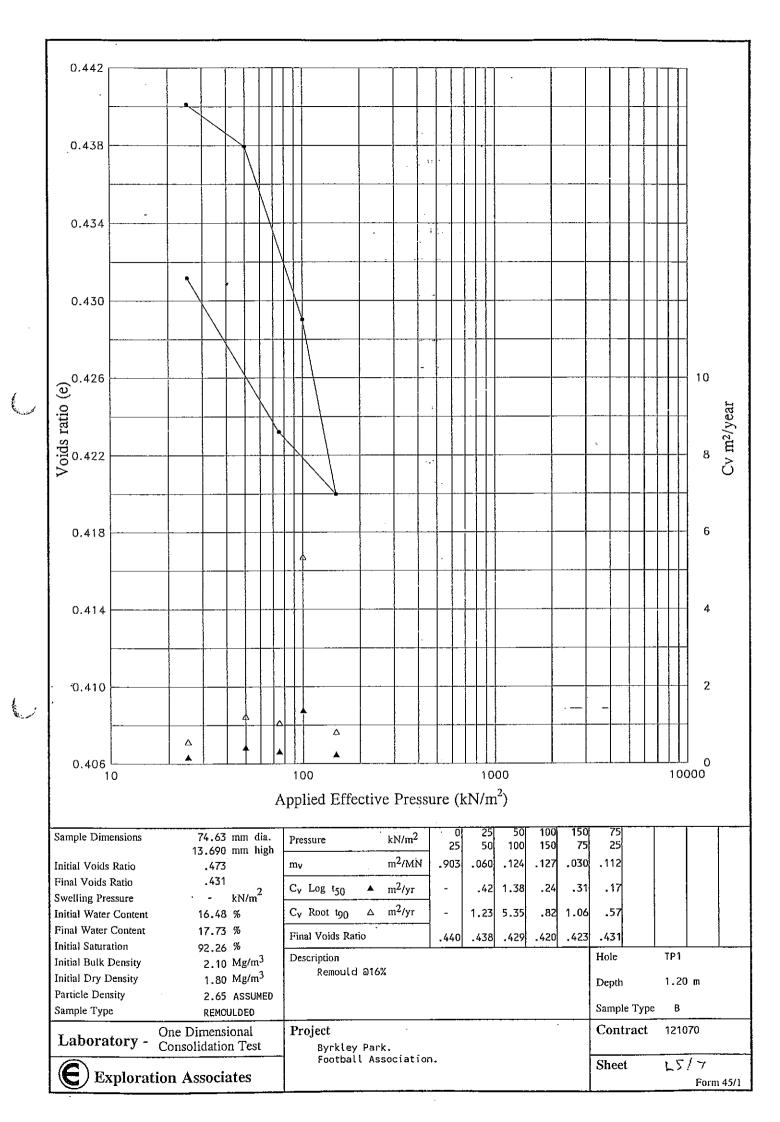
8.65*

.69*

*	Denotes	Temperature	correction	applied	in	calculating	Cv	value
		I CHIPCI GLGI C	COLL COLLOIT	upp: ,cu	,	out out a cirig	~ ~	vu tuc

1	ONE DIMENSIONAL	Project	Contract	121070	
ł	OEDOMETER TEST	Byrkley Park.			
ı		Football Association.	Figure	15/2	
1	Exploration Associates			25/~	

Consolidation. Test Contract Title : Byrkley Park. : TP1 Bore Hole Date : 08/08/01 Depth : 1.20 m Sub Sample : 3 Description Remould a14% Ring weight 108.57 g Sample + Ring weight (before) Specific Gravity 235.47 g 2.65 Assumed Height Sample + Ring weight (after) 237.55 g 13.780 mm Dry weight + Ring weight Diameter 218.38 g 74.64 mm Dry weight 109.81 g Mass of Water (before) 17.09 g Area 4375.6 mm² - Volume Mass of Water (after) 60295.1 mm³ 19.17 g Initial Moisture content 15.56 % Saturation 90.63 % Final Moisture content 17.46 % Initial Bulk density Ht of solids 9.470 mm 2.10 Mg/m^3 Initial Dry density 1.82 Mg/m³


Load	Height	Actual	Ht Of	Voids	Mv	t50	t90	Mean	Cv (i)	Cv (ii)
kN/M^2	Change	Height	Voids	Ratio	m^2/MN	(i)	(ii)	Height	m^2/yr	m^2/yr
0	-	13.780	4.310	.455	.836	-	→	13.636	-	-
25	.288	13.492	4.022	.425	.101	2.75	3.87	13.475	1.61*	4.90*
50	.034	13.458	3.988	.421	.153	3.56	4.79	13.407	1.22*	3.87*
100	.103	13.355	3.885	.410		6.06	7.61		.71*	2.40*
150	.092	13.263	3.793	.400	.138			13.309		
75	024	13.287	3.817	.403	.024	12.12	14.04	13.275	.35*	1.30*
. 75					.119	30.73	50.42	13.327	.14*	.37*
25	079	13.366	3.896	.411	r			· — · -		,

 \star Denotes Temperature correction applied in calculating Cv value

ONE DIMENSIONAL
OEDOMETER TEST

Byrkley Park.
Football Association.

Figure L5/6

Consolidation Test : TP1 Contract Title : Byrkley Park. Bore Hole Date : 08/08/01 Depth : 1.20 m Description Sub Sample : 4 Remould @16% Ring weight 110.16 g Sample + Ring weight (before) Specific Gravity 235.62 g 2.65 Assumed Height Sample + Ring weight (after) 236.97 q 13.690 mm Diameter Dry weight + Ring weight 74.63 mm 217.87 q Dry weight 107.71 g Mass of Water (before) 17.75 g Area 4374.4 mm² Volume Mass of Water (after) 19.10 q 59885.3 mm³ Initial Moisture content 16.48 % 17.73 % Saturation 92.26 % Final Moisture content Initial Bulk density Ht of solids 9.292 mm 2.10 Mg/m^3 Initial Dry density 1.80 Mg/m³ t90 t50 Mean Cv (i) Cv (ii) Load Height Actual Ht Of Voids Μv Height m^2/yr m^2/yr kN/M^2 Change Voids Ratio m^2/MN (i) (ii) Height 0 13.690 4.398 .473 .903 13.536 .309 4.089 .440 25 13.381

.060

.124

.127

.030

.112

.438

.429

.420

.423

.431

50

100

150

75

25

.020

.083

.084

-.030

-.074

13.361

13.278

13.194

13.224

13.298

4.069

3.986

3.902

3.932

4.006

10.39

17.91

13.42

25.64

3.10 -

15.21

3.42

22.08

17.06

32.43

13.371

13.320

13.236

13.209

13.261

.42*

1.38*

.24*

.31*

.17*

1.23*

5.35*

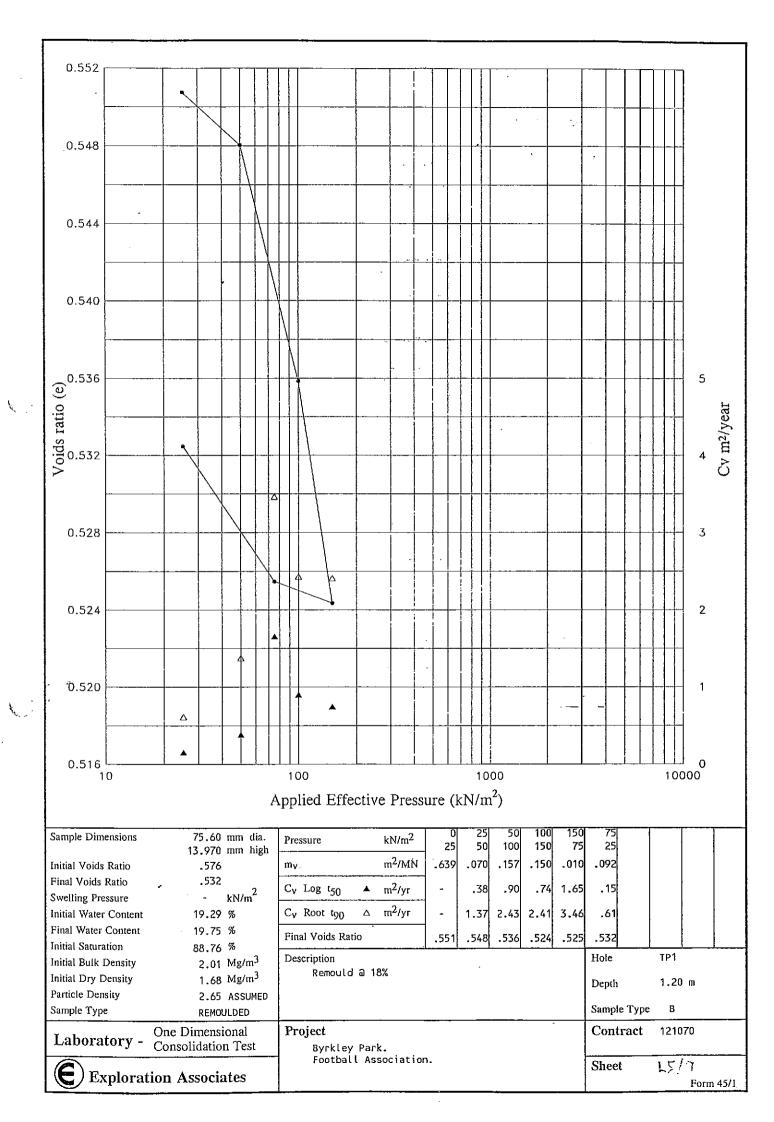
1.06*

.82*

.57*

* Denotes Temperature correction applied in calculating Cv value

ONE DIMENSIONAL
OEDOMETER TEST


Byrkley Park.
Football Association.

Figure

121070

Figure

15 / &

Consolidation Test Contract Title : Byrkley Park. Bore Hole : TP1 08/08/01 : 1.20 m Date Depth Description Remould a 18% Sub Sample : 5 Ring weight 104.27 q Sample + Ring weight (before) Specific Gravity 230.06 g 2.65 Assumed Sample + Ring weight (after) 230.55 g Height 13.970 mm Dry weight + Ring weight Diameter 209.72 g 75.60 mm Dry weight 105.45 g Mass of Water (before) Area 4488.8 mm² 20.34 g Volume Mass of Water (after) 62709.0 mm³ 20.83 g Initial Moisture content 19.29 % Saturation Final Moisture content 19.75 % 88.76 % Initial Bulk density Ht of solids 8.865 mm 2.01 Mg/m³ Initial Dry density 1.68 Mg/m³ t50 t90 Mean Cv (i) Cv (ii) Load Height Actual Ht Of Voids Μv m^2/уг m^2/yr Voids Ratio m^2/MN (ii) Height kN/M^2 Change Height (i) 0 13.970 5.105 .576 13.859 .639 4.882 25 .223 13,747 .551 13.735 .38* 1.37* 14.33 .070 12.00

50

100

150

- 75

25

.024

.108

.102

-.010

-.062

13.723

13.615

13.513

13.523

13.585

4.858

4.750

4.648

4.658

4.720

.548

.536

.524

.525

.532

.157

.150

.010

.092

5.03

5.99

2.67

29.45

7.93

7.88

5.45

31.64

13.669

13.564

13.518

13.554

.90*

.74*

1.65*

.15*

2.43*

2.41*

3.46*

.61*

*	Denotes	Temperature	correction	applied	in	calculating	C٧	value
---	---------	-------------	------------	---------	----	-------------	----	-------

ONE DIMENSIONAL
OEDOMETER TEST


Byrkley Park.
Football Association.

Figure

121070

Figure

15/10

Consolidation Test Contract Title : Byrkley Park. Bore Hole : 06/08/01 Depth Sub Sample Description Remould a 11%

Load Height Actual	Ht Of Voids	M۷	t50	t90 1	Mean Cv (i	i) Cv (ii)
Initial Dry density	1.51	Mg/m^3				
Initial Bulk density	1.69	Mg/m^3	Ht	of solids	7.782	m m
Final Moisture content	25.15	ધ	Sat	uration	41.25	%
Initial Moisture content	11.74	8				
Mass of Water (after)	22.92	_	Vo	lume	60336.0	mm^3
Mass of Water (before)	10.70	g	Are	ea	4420.2	mm^2 .
Dry weight	91.15	g				
Dry weight + Ring weight	194.20	g	Dia	ameter	75.02	mm
Sample + Ring weight (after)	217.12	g	Hei	ight	13.650	mm
Sample + Ring weight (before)	204.90	g -	Spe	ecific Gravity	2.65	Assumed
Ring weight	103.05	g				

Load kN/M^2	. Height Change	Actual Height	Ht Of Voids	Voids Ratio	Mv m^2/MN	t50 (i)	t90 (ii)	Mean Height	Cv (i) m^2/yr	Cv (ii) m^2/yr
0	-	13.650	5.868	.754	.319	_	_	13.596	_	<u>.</u>
25	.109	13.541	5.759	.740	.254	2.24	2.71	13.498	2.09*	7.37*
50	.086	13.455	5.673	.729	.816	.67	1.16	13.181	6.49*	16.00*
100	.549	12.906	5.124	.659	.411	.98	1.44	12.774	4.07*	11.82*
150	.265	12.641	4.859	.624	.025	4.00	4.73	12.653	.99*	3.57*
75	024	12.665	4.883	.628	.095	16.23	20.13	12.695	.24*	.84*
25	060	12.725	4.943	.635						

* Denotes Temperature correction applied in calculating Cv value

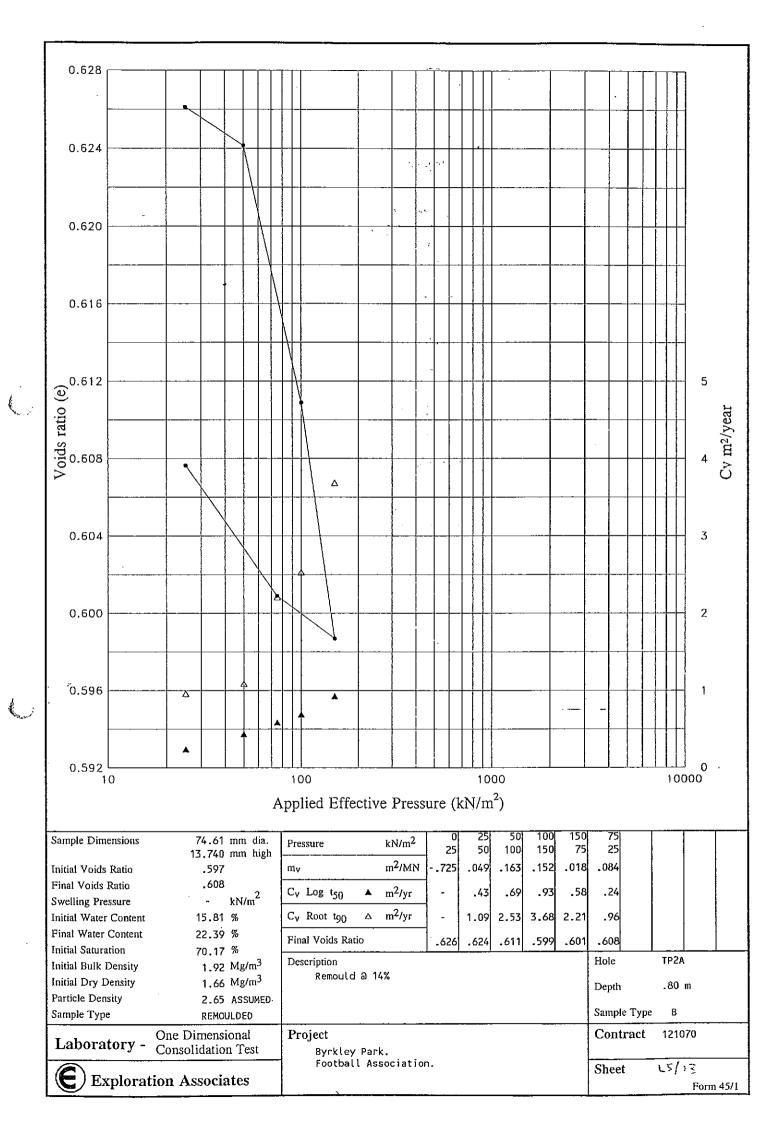
ONE DIMENSIONAL OEDOMETER TEST

Date

Project

Byrkley Park. Football Association.

121070 Contract


F21.3 Figure

: TP2A

: .80 m

: 1

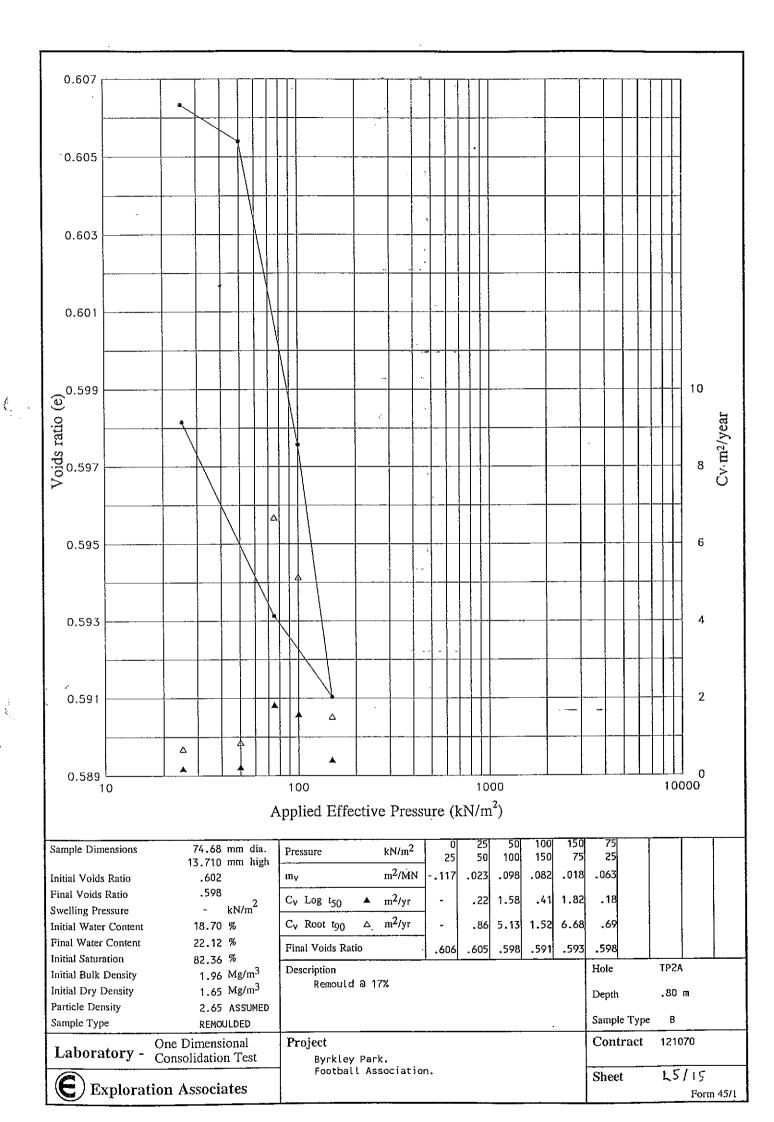
Exploration Associates

Contract Title : Byrkley Park. Date : 06/08/01 Depth : .80 m Description Remould a 14% Sub Sample : 2 Ring weight 110.88 g Sample + Ring weight (before) 226.31 g Specific Gravity 2.65 Assume 2.65 A

Ring weight	110.88	g ·				
Sample + Ring weight (before)	226.31	g		Specific Gravity	2.65	Assumed
Sample + Ring weight (after)	232.87	g		Height	13.740	mm
Dry weight + Ring weight	210.55	g		Diameter	74.61	mm
Dry weight	99.67	g -	**			
Mass of Water (before)	15.76	g		Area	4372.0	mm^2
Mass of Water (after)	22.32	g	*.* <u>*</u> . <u>*</u>	Volume	60071.8	mm^3
Initial Moisture content	15.81	\$ -	., .,			
Final Moisture content	22.39	항		Saturation	70.17	ે
Initial Bulk density	1.92	Mg/m^3		Ht of solids	8.603	mm
Initial Dry density	1.66	Mg/m^3			-	
						-

Load kN/M^2	Height Change	Actual Height	Ht Of Voids	Voids Ratio	Mv m^2/MN	t50 (i)	t90 (ii)	Mean Height	Cv (i) m^2/yr	Cv (ii) m^2/yr
0	-	13.740	5.137	.597	725	_	_	13.865		_
25	249	13.989	5.386	.626		11 50		13.981	.43*	1.09*
50	.017	13.972	5.369	.624	.049	11.58	19.73			
100	.114	13.858	5.255	.611	.163	7.05	8.18	13.915	.69*	2.53*
150	.105	13.753	5.150	.599	.152	5.03	5.40	13.806	.93*	3.68*
75	019	13.772	5.169	.601	.018	8.00	9.05	13.763	.58*	2.21*
25	058	13.830	5.227	.608	.084	19.56	20.78	13.801	.24*	.96*

* Denotes Temperature correction applied in calculating Cv value


ONE DIMENSIONAL
OEDOMETER TEST

Byrkley Park.
Football Association.

Figure

121070

Figure

Consolidation Test Contract Title : Byrkley Park. Bore Hole : TP2A : 06/08/01 : .80 m Date Depth Description Remould a 17% Sub Sample : 3 Ring weight 111.36 g Sample + Ring weight (before) Specific Gravity 229.30 g 2.65 Assumed Sample + Ring weight (after) 232.70 g Height 13.710 mm Dry weight + Ring weight 210.72 g Diameter 74.68 mm Dry weight 99.36 g

Initial Moisture content	18.70 %					
Final Moisture content	22.12 %	Saturation	82.36 %			
Initial Bulk density	1.96 Mg/m^3	Ht of solids	8.560 mm			

1.65 Mg/m^3

21.98 q · · ·

18.58 g

Area

Volume

4380.2 mm²

60053.2 mm³

Mass of Water (before)

Mass of Water (after)

Initial Dry density

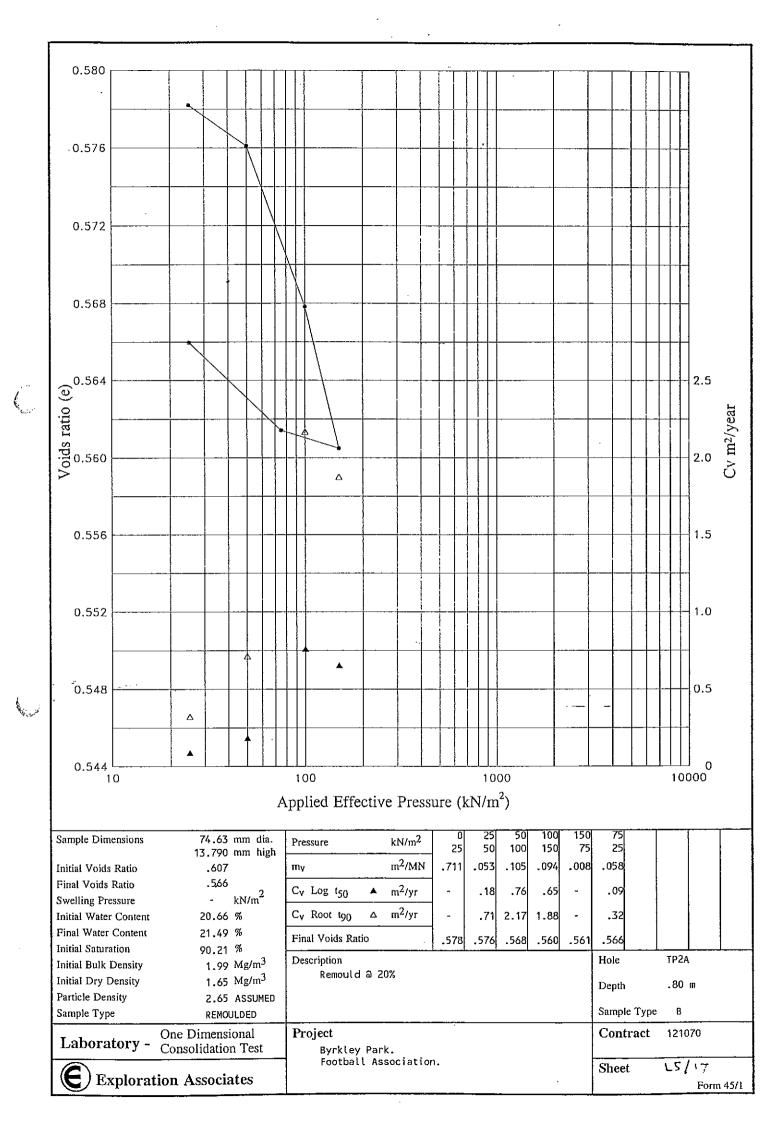
25

-.043

13.680

5.120

.598


Ļ	<u> </u>						**				
	Load	Height	Actual	Ht Of	Voids	Mv	t50	t90	Mean	Cv (i)	Cv (ii)
l	kN/M^2	Change	Height	Voids	Ratio	m^2/MN	(i)	(ii)	Height	m^2/yr	m^2/yr
	0	-	13.710	5.150	.602	117	 ,	<u></u>	13.730	-	_
	25	040	13.750	5.190	.606	.023	22.20	24.18	13.746	.22*	.86*
	50	.008	13.742	5.182	.605	.098	2.97	3.91	13.709	1.58*	5.13*
	100	.067	13.675	5.115	.598	.082	11.20	12.76	13.647	.41*	1.52*
	150	.056	13.619	5.059	.591	018	2.52	2.93	13.628	1.82*	6.68*
١	- * 75	018	13.637	5.077	.593	.063	25.33	28.29	13.659	.18*	.69*

* Denotes Temperature correction applied in calculating Cv value

ONE DIMENSIONAL
OEDOMETER TEST

Byrkley Park.
Football Association.

Figure 15/16

			·····		Consolidat	ion Te	st				
Contract Title : Byrkley Park. Date : 08/08/01 Description Remould a 20%						Ε	Bore Hole Depth Sub Sample		TP2A .80 m 4		
Ring we	eight			108.62	g						
Sample	+ Ring	weight (befor	e)	228.66	g		Specific Grav	ity	2.65 Ass	sumed	
Sample	+ Ring	weight (after)		229.49	g		Height	1	13.790 mm		
Dry wei	ight + R	ing weight		208.11	g		Diameter		74.63 mm		
Dry weight			99.49	g							
Mass of Water (before)			20.55	g		Area	4	4374.4 mm ²			
Mass of	Mass of Water (after)			21.38	g ·	~	Volume 60322.7 mm			^3	
Initial M	Aoisture (content		20.66	8	*A					
Final M	Final Moisture content				왕		Saturation		90.21 %		
Initial B	Bulk dens	ity		1.99	Mg/m^3		Ht of solids		8.583 mm		
Initial I	Dry densi	ty		1.65	Mg/m^3			-		-	
Load	Height	Actual	Ht Of	Voids	Mv	t50	t90	Mean	Cv (i)	Cv (ii)	
kN/M^2	Change	Height	Voids	Ratio	m^2/MN	(i)	(ii)	Height	m^2/yr	m^2/yr	
0	-	13.790	5.207	.607	711	_	_	13.668	_	_	
25	.245	13.545	4.962	.578	.053	24.5	- 7 27.09	13.536	.18*	.71*	
50	.018	13.527	4.944	.576	.105	5.9		13.492	.76*	2.17*	
100	.071	13.456	4.873	.568	.103	·6 9·		13.425	. 76*	1 88*	

.094

.008

.058

.560

.561

.566

6.99

52.38

10.40

60.61

13.425

13.397

13.421

.65*

.09*

1.88*

.32*

()

150

* 75

25

13.393

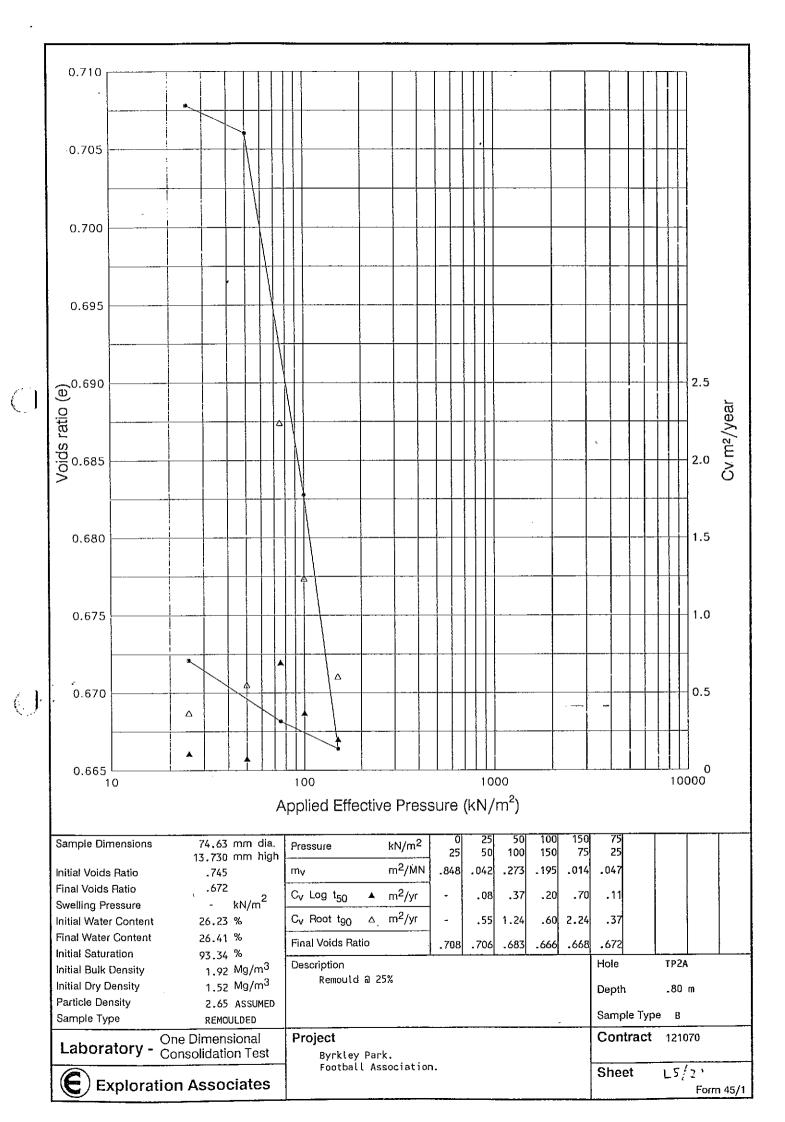
13.401

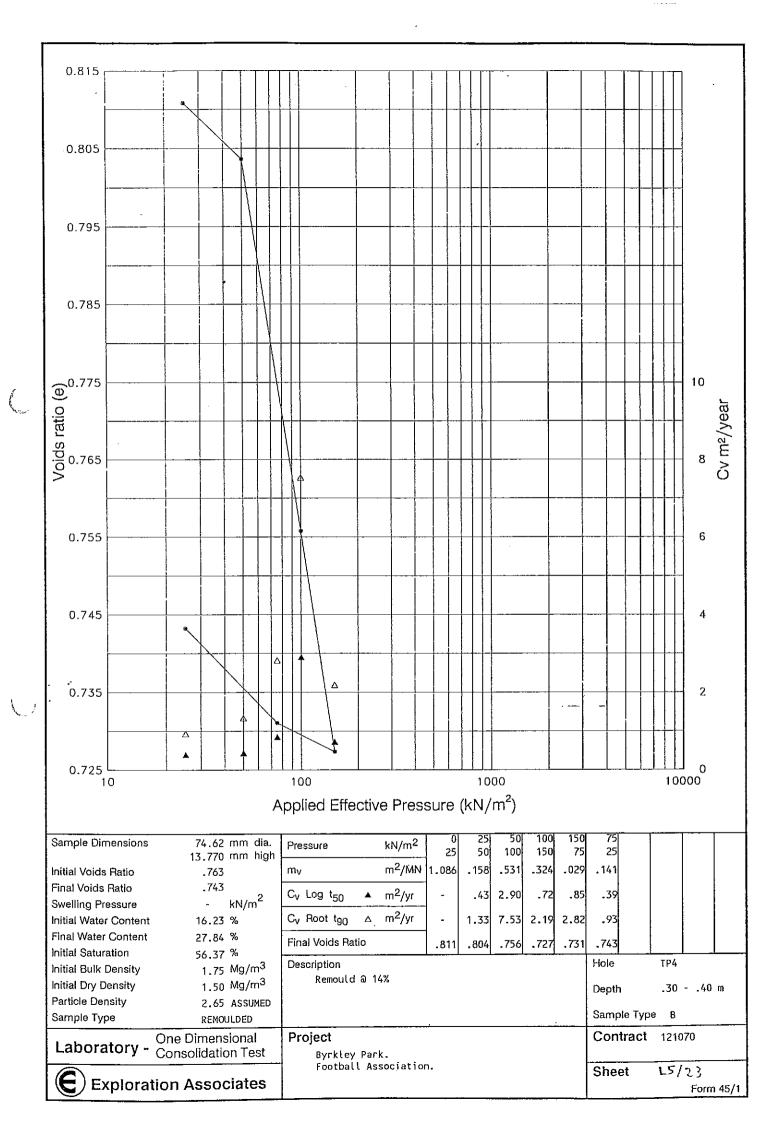
13.440

.063

-.008

-.039


4.810


4.818

4.857

* Denotes	Temperature	correction	applied	in c	alculating	Cv	value

ONE DIMENSIONAL OEDOMETER TEST	Project Byrkley Park.	Contract	121070	
Exploration Associates	Football Association.	Figure	L5/18	

Consolidation Test

Contract Title

Description

: Byrkley Park.

Date

: 22/08/01

Remould a 14%

Bore Hole

: TP4

Depth

: **.30 - .40** m

Sub Sample

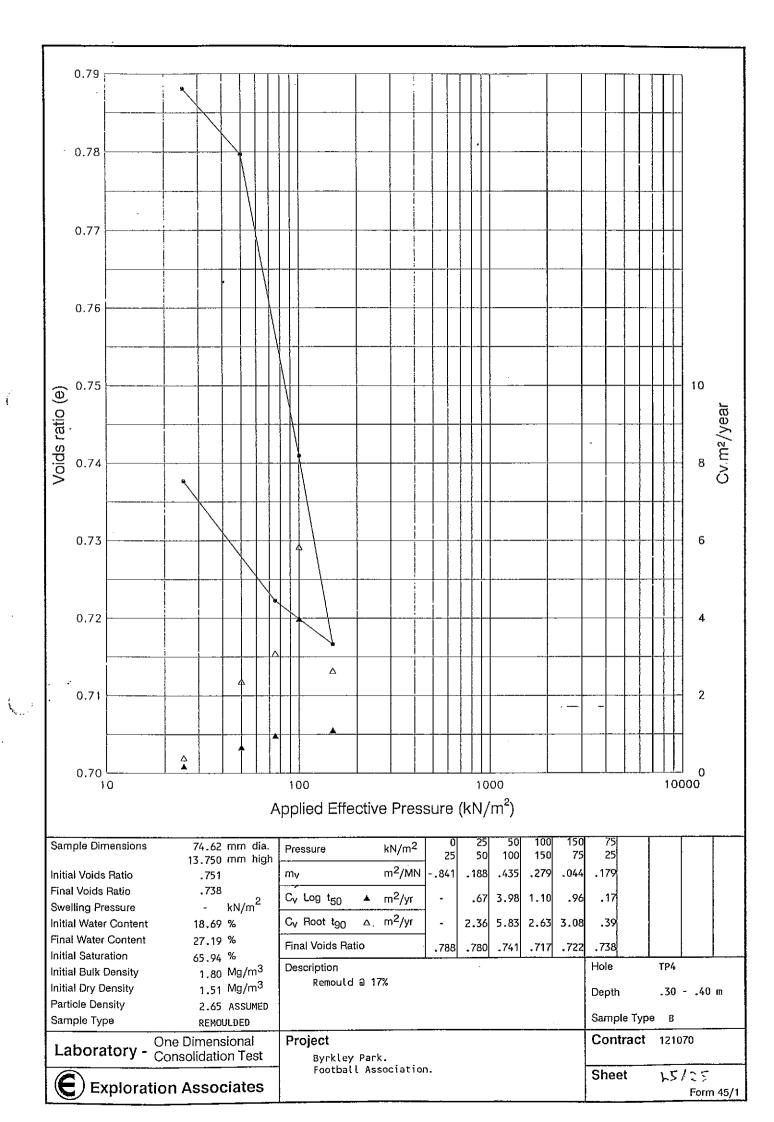
Ring weight	112.28	g				
Sample + Ring weight (before)	217.49	g	Specific Gravity	2.65	Assumed	
Sample + Ring weight (after)	228.00	g	Height	13.770	mm	
Dry weight + Ring weight	202.80	g	Diameter	74.62	mm	
Dry weight	90.52	g				
Mass of Water (before)	14.69	g	Area	4373.2	mm^2	
Mass of Water (after)	25,20	g	Volume	60219.1	mm^3	
Initial Moisture content	16.23	왕				
Final Moisture content	27.84	윱	Saturation	56.37	ક	
Initial Bulk density	1.75	Mg/m^3	Ht of solids	7.811	mm	
Initial Dry density	1.50	Mg/m^3				

	Load N/M^2	Height Change	Actual Height	Ht Of Voids	Voids Ratio	Mv m^2/MN	t50 (i)	t90 (ii)	Mean Height	Cv (i) m^2/yr	Cv (ii) m^2/yr
	0	~	13.770	5.959	.763	-1.086	_	_	13.957	_	_
	25	374	14.144	6.333	.811	.158	11.17	15.42	14.116	.43*	1.33*
	50	.056	14.088	6.277	.804	.531	1.61	2.65	13.901	2.90*	7.53*
	100	.374	13.714	5.903	.756	.324	6.32	8.91	13.603	.72*	2.19*
	150	.222	13.492	5.681	.727					–	
ļ	ž 75	029	13.521	5.710	.731	.029	5.33	6.83	13.507	.85*	2.82*
ŀ	25	095	13.616	5.805	. 743	.141	11.62	20.80	13.569	.39*	.93*

* Denotes Temperature correction applied in calculating Cv value

ONE DIMENSIONAL **OEDOMETER TEST**

Byrkley Park.


121070 Contract

Exploration Associates

Football Association.

Figure

L5/24

